This brief explores the development and testing of artificial intelligence system classification frameworks intended to distill AI systems into concise, comparable and policy-relevant dimensions. Comparing more than 1,800 system classifications, it points to several factors that increase the utility of a framework for human classification of AI systems and enable AI system management, risk assessment and governance.
As modern machine learning systems become more widely used, the potential costs of malfunctions grow. This policy brief describes how trends we already see today—both in newly deployed artificial intelligence systems and in older technologies—show how damaging the AI accidents of the future could be. It describes a wide range of hypothetical but realistic scenarios to illustrate the risks of AI accidents and offers concrete policy suggestions to reduce these risks.
This paper is the third installment in a series on “AI safety,” an area
of machine learning research that aims to identify causes of
unintended behavior in machine learning systems and develop
tools to ensure these systems work safely and reliably. The first
paper in the series, “Key Concepts in AI Safety: An Overview,”
described three categories of AI safety issues: problems of
robustness, assurance, and specification. This paper introduces
interpretability as a means to enable assurance in modern machine
learning systems.
This paper is the second installment in a series on “AI safety,” an
area of machine learning research that aims to identify causes of
unintended behavior in machine learning systems and develop
tools to ensure these systems work safely and reliably. The first
paper in the series, “Key Concepts in AI Safety: An Overview,”
described three categories of AI safety issues: problems of
robustness, assurance, and specification. This paper introduces
adversarial examples, a major challenge to robustness in modern
machine learning systems.
This paper is the first installment in a series on “AI safety,” an area of machine learning research that aims to identify causes of unintended behavior in machine learning systems and develop tools to ensure these systems work safely and reliably. In it, the authors introduce three categories of AI safety issues: problems of robustness, assurance, and specification. Other papers in this series elaborate on these and further key concepts.
The rapid integration of artificial intelligence into military systems raises critical questions of ethics, design and safety. While many states and organizations have called for some form of “AI arms control,” few have discussed the technical details of verifying countries’ compliance with these regulations. This brief offers a starting point, defining the goals of “AI verification” and proposing several mechanisms to support arms inspections and continuous verification.
The rise of deepfakes could enhance the effectiveness of disinformation efforts by states, political parties and adversarial actors. How rapidly is this technology advancing, and who in reality might adopt it for malicious ends? This report offers a comprehensive deepfake threat assessment grounded in the latest machine learning research on generative models.
This website uses cookies.
To learn more, please review this policy. By continuing to browse the site, you agree to these terms.
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.