Publications

CSET produces evidence-driven analysis in a variety of forms, from informative graphics and translations to expert testimony and published reports. Our key areas of inquiry are the foundations of artificial intelligence — such as talent, data and computational power — as well as how AI can be used in cybersecurity and other national security settings. We also do research on the policy tools that can be used to shape AI’s development and use, and on biotechnology.

Report

CSET’s 2024 Annual Report

Center for Security and Emerging Technology
| March 2025

In 2024, CSET continued to deliver impactful, data-driven analysis at the intersection of emerging technology and security policy. Explore our annual report to discover key research highlights, expert testimony, and new analytical tools — all aimed at shaping informed, strategic decisions around AI and emerging tech.

Filter publications
Reports

Truth, Lies, and Automation

Ben Buchanan, Andrew Lohn, Micah Musser, and Katerina Sedova
| May 2021

Growing popular and industry interest in high-performing natural language generation models has led to concerns that such models could be used to generate automated disinformation at scale. This report examines the capabilities of GPT-3--a cutting-edge AI system that writes text--to analyze its potential misuse for disinformation. A model like GPT-3 may be able to help disinformation actors substantially reduce the work necessary to write disinformation while expanding its reach and potentially also its effectiveness.

Data Brief

China’s Artificial Intelligence Industry Alliance

Ngor Luong and Zachary Arnold
| May 2021

As part of its strategy to achieve global leadership in AI, the Chinese government brings together local governments, academic institutions, and companies to establish collaboration platforms. This data brief examines the role of China’s Artificial Intelligence Industry Alliance in advancing its AI strategy, and the key players in the Chinese AI industry.

Data Brief

The Public AI Research Portfolio of China’s Security Forces

Dewey Murdick, Daniel Chou, Ryan Fedasiuk, and Emily S. Weinstein
| March 2021

New analytic tools are used in this data brief to explore the public artificial intelligence (AI) research portfolio of China’s security forces. The methods contextualize Chinese-language scholarly papers that claim a direct working affiliation with components of the Ministry of Public Security, People's Armed Police Force, and People’s Liberation Army. The authors review potential uses of computer vision, robotics, natural language processing and general AI research.

Reports

Chinese Government Guidance Funds

Ngor Luong, Zachary Arnold, and Ben Murphy
| March 2021

The Chinese government is pouring money into public-private investment funds, known as guidance funds, to advance China’s strategic and emerging technologies, including artificial intelligence. These funds are mobilizing massive amounts of capital from public and private sources—prompting both concern and skepticism among outside observers. This overview presents essential findings from our full-length report on these funds, analyzing the guidance fund model, its intended benefits and weaknesses, and its long-term prospects for success.

Reports

Understanding Chinese Government Guidance Funds

Ngor Luong, Zachary Arnold, and Ben Murphy
| March 2021

China’s government is using public-private investment funds, known as guidance funds, to deploy massive amounts of capital in support of strategic and emerging technologies, including artificial intelligence. Drawing exclusively on Chinese-language sources, this report explores how guidance funds raise and deploy capital, manage their investment, and interact with public and private actors. The guidance fund model is no silver bullet, but it has many advantages over traditional industrial policy mechanisms.

Reports

Academics, AI, and APTs

Dakota Cary
| March 2021

Six Chinese universities have relationships with Advanced Persistent Threat (APT) hacking teams. Their activities range from recruitment to running cyber operations. These partnerships, themselves a case study in military-civil fusion, allow state-sponsored hackers to quickly move research from the lab to the field. This report examines these universities’ relationships with known APTs and analyzes the schools’ AI/ML research that may translate to future operational capabilities.

Data Brief

Using Machine Learning to Fill Gaps in Chinese AI Market Data

Zachary Arnold, Joanne Boisson, Lorenzo Bongiovanni, Daniel Chou, Carrie Peelman, and Ilya Rahkovsky
| February 2021

In this proof-of-concept project, CSET and Amplyfi Ltd. used machine learning models and Chinese-language web data to identify Chinese companies active in artificial intelligence. Most of these companies were not labeled or described as AI-related in two high-quality commercial datasets. The authors' findings show that using structured data alone—even from the best providers—will yield an incomplete picture of the Chinese AI landscape.

Reports

China’s STI Operations

William Hannas and Huey-Meei Chang
| January 2021

Open source intelligence (OSINT) and science and technology intelligence (STI) are realized differently in the United States and China, China putting greater value on both. In the United States’ understanding, OSINT “enables” classified reporting, while in China it is the intelligence of first resort. This contrast extends to STI which has a lower priority in the U.S. system, whereas China and its top leaders personally lavish great attention on STI and rely on it for national decisions. Establishing a “National S&T Analysis Center” within the U.S. government could help to address these challenges.

Reports

AI and the Future of Cyber Competition

Wyatt Hoffman
| January 2021

As states turn to AI to gain an edge in cyber competition, it will change the cat-and-mouse game between cyber attackers and defenders. Embracing machine learning systems for cyber defense could drive more aggressive and destabilizing engagements between states. Wyatt Hoffman writes that cyber competition already has the ingredients needed for escalation to real-world violence, even if these ingredients have yet to come together in the right conditions.

Reports

Hacking AI

Andrew Lohn
| December 2020

Machine learning systems’ vulnerabilities are pervasive. Hackers and adversaries can easily exploit them. As such, managing the risks is too large a task for the technology community to handle alone. In this primer, Andrew Lohn writes that policymakers must understand the threats well enough to assess the dangers that the United States, its military and intelligence services, and its civilians face when they use machine learning.