Publications

CSET produces evidence-driven analysis in a variety of forms, from informative graphics and translations to expert testimony and published reports. Our key areas of inquiry are the foundations of artificial intelligence — such as talent, data and computational power — as well as how AI can be used in cybersecurity and other national security settings. We also do research on the policy tools that can be used to shape AI’s development and use, and on biotechnology.

Report

CSET’s 2024 Annual Report

Center for Security and Emerging Technology
| March 2025

In 2024, CSET continued to deliver impactful, data-driven analysis at the intersection of emerging technology and security policy. Explore our annual report to discover key research highlights, expert testimony, and new analytical tools — all aimed at shaping informed, strategic decisions around AI and emerging tech.

Filter publications
Reports

Securing AI

Andrew Lohn and Wyatt Hoffman
| March 2022

Like traditional software, vulnerabilities in machine learning software can lead to sabotage or information leakages. Also like traditional software, sharing information about vulnerabilities helps defenders protect their systems and helps attackers exploit them. This brief examines some of the key differences between vulnerabilities in traditional and machine learning systems and how those differences can affect the vulnerability disclosure and remediation processes.

CSET Research Analyst Dakota Cary testified before the U.S.-China Economic and Security Review Commission hearing on "China’s Cyber Capabilities: Warfare, Espionage, and Implications for the United States." Cary discussed the cooperative relationship between Chinese universities and China’s military and intelligence services to develop talent with the capabilities to perform state-sponsored cyberespionage operations.

Data Brief

Exploring Clusters of Research in Three Areas of AI Safety

Helen Toner and Ashwin Acharya
| February 2022

Problems of AI safety are the subject of increasing interest for engineers and policymakers alike. This brief uses the CSET Map of Science to investigate how research into three areas of AI safety — robustness, interpretability and reward learning — is progressing. It identifies eight research clusters that contain a significant amount of research relating to these three areas and describes trends and key papers for each of them.

Data Visualization

Classifying AI Systems

Catherine Aiken and Brian Dunn
| December 2021

​​This Classifying AI Systems Interactive presents several AI system classification frameworks developed to distill AI systems into concise, comparable and policy-relevant dimensions. It provides key takeaways and framework-specific results from CSET’s analysis of more than 1,800 system classifications done by survey respondents using the frameworks. You can explore the frameworks and example AI systems used in the survey, and even take the survey.

Reports

AI and Compute

Andrew Lohn and Micah Musser
| January 2022

Between 2012 and 2018, the amount of computing power used by record-breaking artificial intelligence models doubled every 3.4 months. Even with money pouring into the AI field, this trendline is unsustainable. Because of cost, hardware availability and engineering difficulties, the next decade of AI can't rely exclusively on applying more and more computing power to drive further progress.

Reports

AI and the Future of Disinformation Campaigns

Katerina Sedova, Christine McNeill, Aurora Johnson, Aditi Joshi, and Ido Wulkan
| December 2021

Artificial intelligence offers enormous promise to advance progress and powerful capabilities to disrupt it. This policy brief is the second installment of a series that examines how advances in AI could be exploited to enhance operations that automate disinformation campaigns. Building on the RICHDATA framework, this report describes how AI can supercharge current techniques to increase the speed, scale, and personalization of disinformation campaigns.

Reports

Making AI Work for Cyber Defense

Wyatt Hoffman
| December 2021

Artificial intelligence will play an increasingly important role in cyber defense, but vulnerabilities in AI systems call into question their reliability in the face of evolving offensive campaigns. Because securing AI systems can require trade-offs based on the types of threats, defenders are often caught in a constant balancing act. This report explores the challenges in AI security and their implications for deploying AI-enabled cyber defenses at scale.

Reports

AI and the Future of Disinformation Campaigns

Katerina Sedova, Christine McNeill, Aurora Johnson, Aditi Joshi, and Ido Wulkan
| December 2021

Artificial intelligence offers enormous promise to advance progress, and powerful capabilities to disrupt it. This policy brief is the first installment of a series that examines how advances in AI could be exploited to enhance operations that automate disinformation. Introducing the RICHDATA framework—a disinformation kill chain—this report describes the stages and techniques used by human operators to build disinformation campaigns.

Reports

Key Concepts in AI Safety: Specification in Machine Learning

Tim G. J. Rudner and Helen Toner
| December 2021

This paper is the fourth installment in a series on “AI safety,” an area of machine learning research that aims to identify causes of unintended behavior in machine learning systems and develop tools to ensure these systems work safely and reliably. The first paper in the series, “Key Concepts in AI Safety: An Overview,” outlined three categories of AI safety issues—problems of robustness, assurance, and specification—and the subsequent two papers described problems of robustness and assurance, respectively. This paper introduces specification as a key element in designing modern machine learning systems that operate as intended.

Data Brief

Classifying AI Systems

Catherine Aiken
| November 2021

This brief explores the development and testing of artificial intelligence system classification frameworks intended to distill AI systems into concise, comparable and policy-relevant dimensions. Comparing more than 1,800 system classifications, it points to several factors that increase the utility of a framework for human classification of AI systems and enable AI system management, risk assessment and governance.