Publications

CSET produces evidence-driven analysis in a variety of forms, from informative graphics and translations to expert testimony and published reports. Our key areas of inquiry are the foundations of artificial intelligence — such as talent, data and computational power — as well as how AI can be used in cybersecurity and other national security settings. We also do research on the policy tools that can be used to shape AI’s development and use, and on biotechnology.

Report

CSET’s 2024 Annual Report

Center for Security and Emerging Technology
| March 2025

In 2024, CSET continued to deliver impactful, data-driven analysis at the intersection of emerging technology and security policy. Explore our annual report to discover key research highlights, expert testimony, and new analytical tools — all aimed at shaping informed, strategic decisions around AI and emerging tech.

Filter publications
Translation

Translation Snapshot: Chinese Overseas Talent Recruitment

Ben Murphy
| September 6, 2023

Translation Snapshots are short posts that highlight related translations produced by CSET’s in-house translation team. Each snapshot identifies relevant translations, provides short summaries, and links to the full translations. Check back regularly for additional Translation Snapshots highlighting our work.

CSET submitted the following comment in response to a Request for Information (RFI) from the National Science Foundation (NSF) about the development of the newly established Technology, Innovation, and Partnerships (TIP) Directorate, in accordance with the CHIPS and Science Act of 2022.

Reports

Adding Structure to AI Harm

Mia Hoffmann and Heather Frase
| July 2023

Real-world harms caused by the use of AI technologies are widespread. Tracking and analyzing them improves our understanding of the variety of harms and the circumstances that lead to their occurrence once AI systems are deployed. This report presents a standardized conceptual framework for defining, tracking, classifying, and understanding harms caused by AI. It lays out the key elements required for the identification of AI harm, their basic relational structure, and definitions without imposing a single interpretation of AI harm. The brief concludes with an example of how to apply and customize the framework while keeping its modular structure.

Reports

A Matrix for Selecting Responsible AI Frameworks

Mina Narayanan and Christian Schoeberl
| June 2023

Process frameworks provide a blueprint for organizations implementing responsible artificial intelligence (AI), but the sheer number of frameworks, along with their loosely specified audiences, can make it difficult for organizations to select ones that meet their needs. This report presents a matrix that organizes approximately 40 public process frameworks according to their areas of focus and the teams that can use them. Ultimately, the matrix helps organizations select the right resources for implementing responsible AI.

Reports

Reducing the Risks of Artificial Intelligence for Military Decision Advantage

Wyatt Hoffman and Heeu Millie Kim
| March 2023

Militaries seek to harness artificial intelligence for decision advantage. Yet AI systems introduce a new source of uncertainty in the likelihood of technical failures. Such failures could interact with strategic and human factors in ways that lead to miscalculation and escalation in a crisis or conflict. Harnessing AI effectively requires managing these risk trade-offs by reducing the likelihood, and containing the consequences of, AI failures.

CSET Research Analyst Dahlia Peterson testified before the U.S.-China Economic and Security Review Commission at a hearing on "China’s Challenges and Capabilities in Educating and Training the Next Generation Workforce."

Reports

One Size Does Not Fit All

Heather Frase
| February 2023

Artificial intelligence is so diverse in its range that no simple one-size-fits-all assessment approach can be adequately applied to it. AI systems have a wide variety of functionality, capabilities, and outputs. They are also created using different tools, data modalities, and resources, which adds to the diversity of their assessment. Thus, a collection of approaches and processes is needed to cover a wide range of AI products, tools, services, and resources.

Formal Response

Comment to NIST on the AI Risk Management Framework

Mina Narayanan
| September 29, 2022

CSET submitted the following comment in response to the National Institute for Standards and Technology's second draft of its AI Risk Management Framework.

CSET submitted this comment to the Department of Commerce to inform incentives, infrastructure, and research and development needed to support a strong domestic semiconductor industry.

Data Brief

Exploring Clusters of Research in Three Areas of AI Safety

Helen Toner and Ashwin Acharya
| February 2022

Problems of AI safety are the subject of increasing interest for engineers and policymakers alike. This brief uses the CSET Map of Science to investigate how research into three areas of AI safety — robustness, interpretability and reward learning — is progressing. It identifies eight research clusters that contain a significant amount of research relating to these three areas and describes trends and key papers for each of them.