Publications

CSET produces evidence-driven analysis in a variety of forms, from informative graphics and translations to expert testimony and published reports. Our key areas of inquiry are the foundations of artificial intelligence — such as talent, data and computational power — as well as how AI can be used in cybersecurity and other national security settings. We also do research on the policy tools that can be used to shape AI’s development and use, and on biotechnology.

Report

CSET’s 2024 Annual Report

Center for Security and Emerging Technology
| March 2025

In 2024, CSET continued to deliver impactful, data-driven analysis at the intersection of emerging technology and security policy. Explore our annual report to discover key research highlights, expert testimony, and new analytical tools — all aimed at shaping informed, strategic decisions around AI and emerging tech.

Filter publications
Reports

Defending Against Intelligent Attackers at Large Scales

Andrew Lohn
| April 22, 2025

We investigate the scale of attack and defense mathematically in the context of AI's possible effect on cybersecurity. For a given target today, highly scaled cyber attacks such as from worms or botnets typically all fail or all succeed.

Reports

Trust Issues: Discrepancies in Trustworthy AI Keywords Use in Policy and Research

Emelia Probasco, Kathleen Curlee, and Autumn Toney
| June 2024

Policy and research communities strive to mitigate AI harm while maximizing its benefits. Achieving effective and trustworthy AI necessitates the establishment of a shared language. The analysis of policies across different countries and research literature identifies consensus on six critical concepts: accountability, explainability, fairness, privacy, security, and transparency.

CSET's Catherine Aiken testified before the National Artificial Intelligence Advisory Committee on measuring progress in U.S. AI research and development.

CSET Senior Fellow Andrew Lohn testified before the House of Representatives Homeland Security Subcommittee on Cybersecurity, Infrastructure Protection, and Innovation at a hearing on "Securing the Future: Harnessing the Potential of Emerging Technologies While Mitigating Security Risks." Lohn discussed the application of AI systems in cybersecurity and AI’s vulnerabilities.

CSET Senior Fellow Andrew Lohn testified before the House of Representatives Science, Space and Technology Subcommittee on Investigations and Oversight and Subcommittee on Research and Technology at a hearing on "Securing the Digital Commons: Open-Source Software Cybersecurity." Lohn discussed how the United States can maximize sharing within the artificial intelligence community while reducing risks to the AI supply chain.

CSET Senior Fellow Andrew Lohn testified before the U.S. Senate Armed Services Subcommittee on Cybersecurity hearing on artificial intelligence applications to operations in cyberspace. Lohn discussed AI's capabilities and vulnerabilities in cyber defenses and offenses.

Data Visualization

National Cybersecurity Center Map

Dakota Cary and Jennifer Melot
| July 2021

China wants to be a “cyber powerhouse” (网络强国). At the heart of this mission is the sprawling 40 km2 campus of the National Cybersecurity Center. Formally called the National Cybersecurity Talent and Innovation Base (国家网络安全人才与创新基地), the NCC is being built in Wuhan. The campus, which China began constructing in 2017 and is still building, includes seven centers for research, talent cultivation, and entrepreneurship; two government-focused laboratories; and a National Cybersecurity School.

Reports

Truth, Lies, and Automation

Ben Buchanan, Andrew Lohn, Micah Musser, and Katerina Sedova
| May 2021

Growing popular and industry interest in high-performing natural language generation models has led to concerns that such models could be used to generate automated disinformation at scale. This report examines the capabilities of GPT-3--a cutting-edge AI system that writes text--to analyze its potential misuse for disinformation. A model like GPT-3 may be able to help disinformation actors substantially reduce the work necessary to write disinformation while expanding its reach and potentially also its effectiveness.

Reports

Downscaling Attack and Defense

Andrew Lohn
| October 7, 2020

The resizing of images, which is typically a required part of preprocessing for computer vision systems, is vulnerable to attack. Images can be created such that the image is completely different at machine-vision scales than at other scales and the default settings for some common computer vision and machine learning systems are vulnerable.