CSET Senior Fellow Andrew Lohn testified before the House of Representatives Homeland Security Subcommittee on Cybersecurity, Infrastructure Protection, and Innovation at a hearing on "Securing the Future: Harnessing the Potential of Emerging Technologies While Mitigating Security Risks." Lohn discussed the application of AI systems in cybersecurity and AI’s vulnerabilities.
CSET Senior Fellow Andrew Lohn testified before the House of Representatives Science, Space and Technology Subcommittee on Investigations and Oversight and Subcommittee on Research and Technology at a hearing on "Securing the Digital Commons: Open-Source Software Cybersecurity." Lohn discussed how the United States can maximize sharing within the artificial intelligence community while reducing risks to the AI supply chain.
CSET Senior Fellow Andrew Lohn testified before the U.S. Senate Armed Services Subcommittee on Cybersecurity hearing on artificial intelligence applications to operations in cyberspace. Lohn discussed AI's capabilities and vulnerabilities in cyber defenses and offenses.
Like traditional software, vulnerabilities in machine learning software can lead to sabotage or information leakages. Also like traditional software, sharing information about vulnerabilities helps defenders protect their systems and helps attackers exploit them. This brief examines some of the key differences between vulnerabilities in traditional and machine learning systems and how those differences can affect the vulnerability disclosure and remediation processes.
Artificial intelligence will play an increasingly important role in cyber defense, but vulnerabilities in AI systems call into question their reliability in the face of evolving offensive campaigns. Because securing AI systems can require trade-offs based on the types of threats, defenders are often caught in a constant balancing act. This report explores the challenges in AI security and their implications for deploying AI-enabled cyber defenses at scale.
Modern machine learning often relies on open-source datasets, pretrained models, and machine learning libraries from across the internet, but are those resources safe to use? Previously successful digital supply chain attacks against cyber infrastructure suggest the answer may be no. This report introduces policymakers to these emerging threats and provides recommendations for how to secure the machine learning supply chain.
Cybersecurity operators have increasingly relied on machine learning to address a rising number of threats. But will machine learning give them a decisive advantage or just help them keep pace with attackers? This report explores the history of machine learning in cybersecurity and the potential it has for transforming cyber defense in the near future.
As states turn to AI to gain an edge in cyber competition, it will change the cat-and-mouse game between cyber attackers and defenders. Embracing machine learning systems for cyber defense could drive more aggressive and destabilizing engagements between states. Wyatt Hoffman writes that cyber competition already has the ingredients needed for escalation to real-world violence, even if these ingredients have yet to come together in the right conditions.
Machine learning systems’ vulnerabilities are pervasive. Hackers and adversaries can easily exploit them. As such, managing the risks is too large a task for the technology community to handle alone. In this primer, Andrew Lohn writes that policymakers must understand the threats well enough to assess the dangers that the United States, its military and intelligence services, and its civilians face when they use machine learning.
Machine learning may provide cyber attackers with the means to execute more effective and more destructive attacks against industrial control systems. As new ML tools are developed, CSET discusses the ways in which attackers may deploy these tools and the most effective avenues for industrial system defenders to respond.
This website uses cookies.
To learn more, please review this policy. By continuing to browse the site, you agree to these terms.
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.