Publications

CSET produces evidence-driven analysis in a variety of forms, from informative graphics and translations to expert testimony and published reports. Our key areas of inquiry are the foundations of artificial intelligence — such as talent, data and computational power — as well as how AI can be used in cybersecurity and other national security settings. We also do research on the policy tools that can be used to shape AI’s development and use, and on biotechnology.

Report

CSET’s 2024 Annual Report

Center for Security and Emerging Technology
| March 2025

In 2024, CSET continued to deliver impactful, data-driven analysis at the intersection of emerging technology and security policy. Explore our annual report to discover key research highlights, expert testimony, and new analytical tools — all aimed at shaping informed, strategic decisions around AI and emerging tech.

Filter publications

Data Snapshots are informative descriptions and quick analyses that dig into CSET’s unique data resources. This five-part series uses data from the U.S. Department of Education and other select sources to complement existing CSET work on the U.S. AI workforce.

Reports

Reducing the Risks of Artificial Intelligence for Military Decision Advantage

Wyatt Hoffman and Heeu Millie Kim
| March 2023

Militaries seek to harness artificial intelligence for decision advantage. Yet AI systems introduce a new source of uncertainty in the likelihood of technical failures. Such failures could interact with strategic and human factors in ways that lead to miscalculation and escalation in a crisis or conflict. Harnessing AI effectively requires managing these risk trade-offs by reducing the likelihood, and containing the consequences of, AI failures.

CSET Research Analyst Dahlia Peterson testified before the U.S.-China Economic and Security Review Commission at a hearing on "China’s Challenges and Capabilities in Educating and Training the Next Generation Workforce."

Reports

One Size Does Not Fit All

Heather Frase
| February 2023

Artificial intelligence is so diverse in its range that no simple one-size-fits-all assessment approach can be adequately applied to it. AI systems have a wide variety of functionality, capabilities, and outputs. They are also created using different tools, data modalities, and resources, which adds to the diversity of their assessment. Thus, a collection of approaches and processes is needed to cover a wide range of AI products, tools, services, and resources.

Reports

China’s AI Workforce

Diana Gehlhaus, Joanne Boisson, Sara Abdulla, Jacob Feldgoise, Luke Koslosky, and Dahlia Peterson
| November 2022

U.S. policies on artificial intelligence education and the AI workforce must grow, cultivate, attract, and retain the world’s best and brightest. Given China’s role as a producer of AI talent, understanding its AI workforce could provide important insight. This report provides an analysis of the AI workforce demand in China using a novel dataset of 6.8 million job postings. It then outlines potential implications along with future reports in this series.

Formal Response

Comment to NIST on the AI Risk Management Framework

Mina Narayanan
| September 29, 2022

CSET submitted the following comment in response to the National Institute for Standards and Technology's second draft of its AI Risk Management Framework.

Reports

AI Faculty Shortages

Remco Zwetsloot and Jack Corrigan
| July 2022

Universities are the engines that power the AI talent pipeline, but mounting evidence suggests that U.S. computer science departments do not have enough faculty to meet growing student interest. This paper explores the potential mismatch between supply and demand in AI education, discusses possible causes and consequences, and offers recommendations for increasing teaching capacity at U.S. universities.

Reports

Training Tomorrow’s AI Workforce

Diana Gehlhaus and Luke Koslosky
| April 2022

Community and technical colleges offer enormous potential to grow, sustain, and diversify the U.S. artificial intelligence (AI) talent pipeline. However, these institutions are not being leveraged effectively. This report evaluates current AI-related programs and the associated number of graduates. The authors find that few AI and AI-related degrees and certificates are being awarded today. They propose five recommendations to address existing challenges and harness the potential of these institutions to train tomorrow’s AI workforce.

Reports

The Long-Term Stay Rates of International STEM PhD Graduates

Jack Corrigan, James Dunham, and Remco Zwetsloot
| April 2022

This issue brief uses data from the National Science Foundation’s Survey of Doctorate Recipients to explore how many of the international students who earn STEM PhDs from U.S. universities stay in the country after graduation. The authors trace the journeys that these graduates take through the immigration system and find that most remain in the United States long after earning their degrees.

Data Brief

Exploring Clusters of Research in Three Areas of AI Safety

Helen Toner and Ashwin Acharya
| February 2022

Problems of AI safety are the subject of increasing interest for engineers and policymakers alike. This brief uses the CSET Map of Science to investigate how research into three areas of AI safety — robustness, interpretability and reward learning — is progressing. It identifies eight research clusters that contain a significant amount of research relating to these three areas and describes trends and key papers for each of them.