Publications

CSET produces evidence-driven analysis in a variety of forms, from informative graphics and translations to expert testimony and published reports. Our key areas of inquiry are the foundations of artificial intelligence — such as talent, data and computational power — as well as how AI can be used in cybersecurity and other national security settings. We also do research on the policy tools that can be used to shape AI’s development and use, and on biotechnology.

Report

CSET’s 2024 Annual Report

Center for Security and Emerging Technology
| March 2025

In 2024, CSET continued to deliver impactful, data-driven analysis at the intersection of emerging technology and security policy. Explore our annual report to discover key research highlights, expert testimony, and new analytical tools — all aimed at shaping informed, strategic decisions around AI and emerging tech.

Filter publications

Artificial intelligence (AI) is beginning to change cybersecurity. This report takes a comprehensive look across cybersecurity to anticipate whether those changes will help cyber defense or offense. Rather than a single answer, there are many ways that AI will help both cyber attackers and defenders. The report finds that there are also several actions that defenders can take to tilt the odds to their favor.

Reports

Wuhan’s AI Development

William Hannas, Huey-Meei Chang, and Daniel Chou
| May 2025

Wuhan, China’s inland metropolis, is paving the way for a nationwide rollout of “embodied” artificial intelligence meant to fast-track scientific discovery, optimize production, streamline commerce, and facilitate state supervision of social activities. Grounded in real-world data, the AI grows smarter, offering a pathway to artificial “general” intelligence that will reinforce state ideology and boost economic goals. This report documents the genesis of Wuhan’s AGI initiative and its multifaceted deployment.

Reports

Promoting AI Innovation Through Competition

Jack Corrigan
| May 2025

Maintaining long-term U.S. leadership in artificial intelligence will require policymakers to foster a diversified, contestable, and competitive market for AI systems. Today, however, incumbent technology companies maintain a distinct advantage in the production of large AI models, and they have the means and motion to use their control over key chokepoints in the AI supply chain (compute, data, foundation models, distribution channels) to stifle competition. This report explores the associated economic and national security risks, and offers recommendations for maintaining an open and competitive AI industry.

Reports

Defending Against Intelligent Attackers at Large Scales

Andrew Lohn
| April 22, 2025

We investigate the scale of attack and defense mathematically in the context of AI's possible effect on cybersecurity. For a given target today, highly scaled cyber attacks such as from worms or botnets typically all fail or all succeed.

Unlike other domains of conflict, and unlike other fields with high anticipated risk from AI, the cyber domain is intrinsically digital with a tight feedback loop between AI training and cyber application. Cyber may have some of the largest and earliest impacts from AI, so it is important to understand how the cyber domain may change as AI continues to advance. Our approach reviewed the literature, collecting nine arguments that have been proposed for offensive advantage in cyber conflict and nine proposed arguments for defensive advantage.

Reports

How to Assess the Likelihood of Malicious Use of Advanced AI Systems

Josh A. Goldstein and Girish Sastry
| March 2025

As new advanced AI systems roll out, there is widespread disagreement about malicious use risks. Are bad actors likely to misuse these tools for harm? This report presents a simple framework to guide the questions researchers ask—and the tools they use—to evaluate the likelihood of malicious use.

Formal Response

CSET’s Recommendations for an AI Action Plan

March 14, 2025

In response to the Office of Science and Technology Policy's request for input on an AI Action Plan, CSET provides key recommendations for advancing AI research, ensuring U.S. competitiveness, and maximizing benefits while mitigating risks. Our response highlights policies to strengthen the AI workforce, secure technology from illicit transfers, and foster an open and competitive AI ecosystem.

Reports

Chinese Critiques of Large Language Models

William Hannas, Huey-Meei Chang, Maximilian Riesenhuber, and Daniel Chou
| January 2025

Large generative models are widely viewed as the most promising path to general (human-level) artificial intelligence and attract investment in the billions of dollars. The present enthusiasm notwithstanding, a chorus of ranking Chinese scientists regard this singular approach to AGI as ill-advised. This report documents these critiques in China’s research, public statements, and government planning, while pointing to additional, pragmatic reasons for China’s pursuit of a diversified research portfolio.

Data Brief

Identifying Emerging Technologies in Research

Catherine Aiken, James Dunham, Jennifer Melot, and Zachary Arnold
| December 2024

This paper presents two new methods for identifying research relevant to emerging technology. The authors developed and deployed technology topic classification and targeted research field scoring over a corpus of scientific literature to identify research relevant to cybersecurity, LLM development, and chips fabrication and design—expanding CSET’s existing set of topic classifications for AI, computer vision, NLP, robotics, and AI safety. The paper summarizes motivation, methods, and results.

Data Snapshot

Funding the AI Cloud — Amazon, Alphabet, and Microsoft’s Cloud Computing Investments, Part 3

Christian Schoeberl and Jack Corrigan
| November 20, 2024

Data Snapshots are informative descriptions and quick analyses that dig into CSET’s unique data resources. This three-part series uses data from a variety of sources to track how three cloud providers—Amazon, Alphabet, and Microsoft—distribute their financial resources to create and sustain demand for their cloud services. By investing in data centers & workforce training, the large tech platforms of Amazon, Google, and Microsoft draw developers, companies, and governments to their tools & services.