This research agenda provides a roadmap for the next phase of CSET’s line of research on the U.S. AI workforce. Our goal is to assist policymakers and other stakeholders in the national security community to create policies that will ensure the United States maintains its competitive advantage in AI talent. We welcome comments, feedback and input on this vision at cset@georgetown.edu.
Claire Perkins, Diana Gehlhaus, Kayla Goode, Jennifer Melot, Ehrik Aldana, Grace Doerfler, and Gayani Gamage
| October 2021
Created through a joint partnership between CSET and the AI Education Project, the AI Education Catalog aims to raise awareness of the AI-related programs available to students and educators, as well as to help inform AI education and workforce policy.
In an opinion piece for The Hill, Research Fellow Diana Gehlhaus calls for a clear U.S. AI workforce policy if the U.S. wants to be the leader in AI talent drawing from her latest report.
Diana Gehlhaus, Luke Koslosky, Kayla Goode, and Claire Perkins
| October 2021
This policy brief addresses the need for a clearly defined artificial intelligence education and workforce policy by providing recommendations designed to grow, sustain, and diversify the U.S. AI workforce. The authors employ a comprehensive definition of the AI workforce—technical and nontechnical occupations—and provide data-driven policy goals. Their recommendations are designed to leverage opportunities within the U.S. education and training system while mitigating its challenges, and prioritize equity in access and opportunity to AI education and AI careers.
Diana Gehlhaus, Ron Hodge, Luke Koslosky, Kayla Goode, and Jonathan Rotner
| September 2021
This policy brief, authored in collaboration with the MITRE Corporation, provides a new perspective on the U.S. Department of Defense’s struggle to recruit and retain artificial intelligence talent. The authors find that the DOD already has a cadre of AI and related experts, but that this talent remains hidden. Better leveraging this talent could go a long way in meeting the DOD’s AI objectives. The authors argue that this can be done through policies that more effectively identify AI talent and assignment opportunities, processes that incentivize experimentation and changes in career paths, and investing in the necessary technological infrastructure.
A globally competitive AI workforce hinges on the education, development, and sustainment of the best and brightest AI talent. This issue brief compares efforts to integrate AI education in China and the United States, and what advantages and disadvantages this entails. The authors consider key differences in system design and oversight, as well as strategic planning. They then explore implications for the U.S. national security community.
A globally competitive AI workforce hinges on the education, development, and sustainment of the best and brightest AI talent. This issue brief provides an overview of the education systems in China and the United States, lending context to better understand the accompanying main report, “AI Education in China and the United States: A Comparative Assessment.”
Remco Zwetsloot, Jack Corrigan, Emily S. Weinstein, Dahlia Peterson, Diana Gehlhaus, and Ryan Fedasiuk
| August 2021
Since the mid-2000s, China has consistently graduated more STEM PhDs than the United States, a key indicator of a country’s future competitiveness in STEM fields. This paper explores the data on STEM PhD graduation rates and projects their growth over the next five years, during which the gap between China and the United States is expected to increase significantly.
Summer camps are an integral part of many U.S. students’ education, but little is known about camps that focus on artificial intelligence education. This data brief maps out the AI summer camp landscape in the United States and explores the camps’ locations, target age ranges, price, and hosting organization type.
This issue brief explores whether artificial intelligence and AI-related certifications serve as potential pathways to enter the U.S. AI workforce. The authors find that according to U.S. AI occupation job postings data over 2010–2020, there is little demand from employers for AI and AI-related certifications. From this perspective, such certifications appear to present more hype than promise.
This website uses cookies.
To learn more, please review this policy. By continuing to browse the site, you agree to these terms.
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.