Publications

CSET produces evidence-driven analysis in a variety of forms, from informative graphics and translations to expert testimony and published reports. Our key areas of inquiry are the foundations of artificial intelligence — such as talent, data and computational power — as well as how AI can be used in cybersecurity and other national security settings. We also do research on the policy tools that can be used to shape AI’s development and use, and on biotechnology.

Report

CSET’s 2024 Annual Report

Center for Security and Emerging Technology
| March 2025

In 2024, CSET continued to deliver impactful, data-driven analysis at the intersection of emerging technology and security policy. Explore our annual report to discover key research highlights, expert testimony, and new analytical tools — all aimed at shaping informed, strategic decisions around AI and emerging tech.

Filter publications
Reports

Research Security, Collaboration, and the Changing Map of Global R&D

Melissa Flagg, Autumn Toney, and Paul Harris
| June 2021

The global map of research has shifted dramatically over the last 20 years. Annual global investment in research and development has tripled, and the United States’ share of both global R&D funding and total research output is diminishing. The open research system, with its expanding rates of investment and interconnectedness, has delivered tremendous benefits to many nations but also created new challenges for research integrity and security.

Data Brief

AI and Industry

Eri Phinisee, Autumn Toney, and Melissa Flagg
| May 2021

Artificial intelligence is said to be transforming the global economy and society in what some dub the “fourth industrial revolution.” This data brief analyzes media representations of AI and the alignments, or misalignments, with job postings that include the AI-related skills needed to make AI a practical reality. This potential distortion is important as the U.S. Congress places an increasing emphasis on AI. If government funds are shifted away from other areas of science and technology, based partly on the representations that leaders and the public are exposed to in the media, it is important to understand how those representations align with real jobs across the country.

Data Brief

AI Hubs

Max Langenkamp and Melissa Flagg
| April 2021

U.S. policymakers need to understand the landscape of artificial intelligence talent and investment as AI becomes increasingly important to national and economic security. This knowledge is critical as leaders develop new alliances and work to curb China’s growing influence. As an initial effort, an earlier CSET report, “AI Hubs in the United States,” examined the domestic AI ecosystem by mapping where U.S. AI talent is produced, where it is concentrated, and where AI private equity funding goes. Given the global nature of the AI ecosystem and the importance of international talent flows, this paper looks for the centers of AI talent and investment in regions and countries that are key U.S. partners: Europe and the CANZUK countries (Canada, Australia, New Zealand, and the United Kingdom).

Reports

Key Concepts in AI Safety: Interpretability in Machine Learning

Tim G. J. Rudner and Helen Toner
| March 2021

This paper is the third installment in a series on “AI safety,” an area of machine learning research that aims to identify causes of unintended behavior in machine learning systems and develop tools to ensure these systems work safely and reliably. The first paper in the series, “Key Concepts in AI Safety: An Overview,” described three categories of AI safety issues: problems of robustness, assurance, and specification. This paper introduces interpretability as a means to enable assurance in modern machine learning systems.

Reports

Key Concepts in AI Safety: Robustness and Adversarial Examples

Tim G. J. Rudner and Helen Toner
| March 2021

This paper is the second installment in a series on “AI safety,” an area of machine learning research that aims to identify causes of unintended behavior in machine learning systems and develop tools to ensure these systems work safely and reliably. The first paper in the series, “Key Concepts in AI Safety: An Overview,” described three categories of AI safety issues: problems of robustness, assurance, and specification. This paper introduces adversarial examples, a major challenge to robustness in modern machine learning systems.

Reports

Key Concepts in AI Safety: An Overview

Tim G. J. Rudner and Helen Toner
| March 2021

This paper is the first installment in a series on “AI safety,” an area of machine learning research that aims to identify causes of unintended behavior in machine learning systems and develop tools to ensure these systems work safely and reliably. In it, the authors introduce three categories of AI safety issues: problems of robustness, assurance, and specification. Other papers in this series elaborate on these and further key concepts.

Reports

Lessons from Stealth for Emerging Technologies

Peter Westwick
| March 2021

Stealth technology was one of the most decisive developments in military aviation in the last 50 years. With U.S. technological leadership now under challenge, especially from China, this issue brief derives several lessons from the history of Stealth to guide current policymakers. The example of Stealth shows how the United States produced one critical technology in the past and how it might produce others today.

Reports

AI Verification

Matthew Mittelsteadt
| February 2021

The rapid integration of artificial intelligence into military systems raises critical questions of ethics, design and safety. While many states and organizations have called for some form of “AI arms control,” few have discussed the technical details of verifying countries’ compliance with these regulations. This brief offers a starting point, defining the goals of “AI verification” and proposing several mechanisms to support arms inspections and continuous verification.

Data Brief

From China to San Francisco: The Location of Investors in Top U.S. AI Startups

Rebecca Kagan, Rebecca Gelles, and Zachary Arnold
| February 2021

Foreign investors comprise a significant portion of investors in top U.S. AI startups, with China as the leading location. The authors analyze investment data in the U.S. AI startup ecosystem both domestically and abroad, outlining the sources of global investment.

Data Brief

Corporate Investors in Top U.S. AI Startups

Rebecca Kagan, Rebecca Gelles, and Zachary Arnold
| February 2021

Corporate investors are a significant player in the U.S. AI startup ecosystem, funding 71 percent of top U.S. AI startups. The authors analyze the trends in top corporate funders and the startups receiving corporate money.