Artificial intelligence offers enormous promise to advance progress and powerful capabilities to disrupt it. This policy brief is the second installment of a series that examines how advances in AI could be exploited to enhance operations that automate disinformation campaigns. Building on the RICHDATA framework, this report describes how AI can supercharge current techniques to increase the speed, scale, and personalization of disinformation campaigns.
Artificial intelligence offers enormous promise to advance progress, and powerful capabilities to disrupt it. This policy brief is the first installment of a series that examines how advances in AI could be exploited to enhance operations that automate disinformation. Introducing the RICHDATA framework—a disinformation kill chain—this report describes the stages and techniques used by human operators to build disinformation campaigns.
Software vulnerability discovery, patching, and exploitation—collectively known as the vulnerability lifecycle—is time consuming and labor intensive. Automating the process could significantly improve software security and offensive hacking. The Defense Advanced Research Projects Agency’s Cyber Grand Challenge supported teams of researchers from 2014 to 2016 that worked to create these tools. China took notice. In 2017, China hosted its first Robot Hacking Game, seeking to automate the software vulnerability lifecycle. Since then, China has hosted seven such competitions and the People’s Liberation Army has increased its role in hosting the games.
Modern machine learning often relies on open-source datasets, pretrained models, and machine learning libraries from across the internet, but are those resources safe to use? Previously successful digital supply chain attacks against cyber infrastructure suggest the answer may be no. This report introduces policymakers to these emerging threats and provides recommendations for how to secure the machine learning supply chain.
Cybersecurity operators have increasingly relied on machine learning to address a rising number of threats. But will machine learning give them a decisive advantage or just help them keep pace with attackers? This report explores the history of machine learning in cybersecurity and the potential it has for transforming cyber defense in the near future.
Six Chinese universities have relationships with Advanced Persistent Threat (APT) hacking teams. Their activities range from recruitment to running cyber operations. These partnerships, themselves a case study in military-civil fusion, allow state-sponsored hackers to quickly move research from the lab to the field. This report examines these universities’ relationships with known APTs and analyzes the schools’ AI/ML research that may translate to future operational capabilities.
Machine learning may provide cyber attackers with the means to execute more effective and more destructive attacks against industrial control systems. As new ML tools are developed, CSET discusses the ways in which attackers may deploy these tools and the most effective avenues for industrial system defenders to respond.
Geographical, the magazine of the Royal Geographical Society, reviews CSET Senior Faculty Fellow Ben Buchanan's latest book, which highlights the landscape of subtle but persistent cyber attacks that are changing statecraft.
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.