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Executive Summary  

Historically, the progress of artificial intelligence (AI) has been mercurial, alternating 
between surprising breakthroughs and periods of comparative drought. While that will 
continue to be true to some extent, the incentives and trends are clearer than they 
have been, and there is even a subfield dedicated to mathematically predicting how 
much progress to expect from additional investments.  

These predictions suggest that further performance gains will come from increasing 
the scale of investment in the current approaches, but that there are sharply 
diminishing returns. For example, simply increasing the computing budget from $10 
million to $100 million increased the pass rate for AI-generated computer programs 
from about 65% to about 75%. A billion-dollar version of the model would apparently 
only reach about 80%, and a trillion-dollar version only 90%. However, the record 
pass rates already exceed those numbers because users are more inventive in how 
they apply existing models. This highlights how researcher ingenuity can outperform 
large-scale investment. 

Continued investment still has its place. Even shrinking jumps in performance from 
scaling may continue to justify the rising costs. It may also be that only relatively small 
improvements in performance “unlock” valuable or risky capabilities that justify 
policymaker intervention to either enable or avoid them.  

There are initial signs, though, that these diminishing marginal returns are already 
dampening the drive for ever-larger models. The growth in compute to train the 
largest models appears to be slowing. Among publicly available models, users and 
developers prefer to download intermediate-scale models even when larger and more 
powerful ones are freely available from the same providers. 

These trends raise questions about the types of models that will be most impactful 
and the relative importance of the compute, data, and algorithms that governments 
might hope to control. They also raise questions about the need for policymakers to 
intervene to promote or impede that progress and their opportunities to do so.  
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Introduction 

The trajectory of AI progress is more contentious than ever, with both utopian and 
dystopian visions of where the current path leads. On the pessimistic side are 
arguments that AI is becoming an existential threat to be viewed alongside pandemics 
and nuclear war.1 This leads to a suite of policy questions such as: Should companies 
agree to a six-month moratorium on further growth?2 And should governments do 
more to block the sale of specialized hardware to rival nations?3 More optimistically, 
others argue that AI will be a net economic and security boon. This leads to other 
questions such as whether nations should pay to develop the most powerful models 
rather than relying on companies.4 And should governments do more to provide 
computing hardware to their own citizenry, either by provisioning a nationalized center 
or subsidizing computing hardware development?5 

Many of these questions hinge on the idea that there will be substantial progress in AI 
by simply increasing the computing resources allocated to it. Recent history would 
certainly support that, but given the amount of investment required and the potential 
impact of the capabilities being discussed, it is worth deeper investigation. This report 
provides some baselines for anticipating future progress, as well as what shifts to 
watch for in the field of AI. It also introduces the tools and data for making these 
estimates. 

This report starts by describing the current scale of AI models. It then describes how 
increases in scale to this point have been the driving force for recent progress but also 
shows that the growth in resources being allocated to the most compute-intensive 
models is slowing. That is likely because there are diminishing returns to further 
investment. This report first shows the increasing cost of progress based on the costs 
to train larger AI models, then illustrates the increasing cost to run those larger AI 
models. Furthermore, these costs may potentially drive users and companies toward 
smaller models even when larger ones could be created or are already available. This 
report's analysis suggests that users may already be choosing smaller models based 
on the download counts from a popular repository. Finally, it briefly discusses what 
these various economic and empirical trends might mean for future progress in AI, 
noting that scaling up resource allocation is not the only avenue to continued progress 
in AI. 
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What Makes a Model Large? 

This report focuses on “Large Language Models” (LLMs) but there is also no official 
definition for what counts as “large.” The “large” abstractly refers to any of several 
traits such as the number of parameters in the model, the amount of memory required 
to hold it, the amount of computation needed to train or run it, or the number of dollars 
needed to do those computations. And there is no clear threshold that separates 
“large” models from “small” models. 

The small end of large 

A rough division between large and small models is one billion parameters. GPT-2 (an 
openly available predecessor to the engine behind ChatGPT) comes in four sizes, the 
largest of which crossed this threshold with 1.5 billion parameters.6 It was the first 
major model to be withheld for fears about its potential for misuse. However, aside 
from one billion being a convenient round number, models with many more 
parameters than that often do not fit on a single GPU, which makes them more 
cumbersome and expensive to use.7  

The one billion parameter threshold is not a hard rule. Some would also consider 
models with fewer than one billion parameters to be “large,” while others might only 
consider a model large if it requires multiple processors to train and operate.  

The large end of large 

If one billion is the minimum threshold to be considered large, then what is the upper 
end of large? Although there is certainly an exact answer for how large the current 
largest model is, AI companies treat that information as proprietary. There are a variety 
of clues and recent trends to try to draw from, though. 

Some models, known as mixture of experts (MoE), have over a trillion parameters, but 
they are effectively several smaller specialized models stitched together so that a 
query can be directed to the most appropriate smaller specialized model. The largest 
publicly known single models (referred to as “dense” models) in terms of parameter 
counts are in the range of Google’s PaLM with 540 billion parameters and Nvidia’s 
Megatron-Turing NLG with 530 billion parameters.8 However, these are both 
proprietary models. Until recently, the largest openly available models were Meta’s 
OPT-175B or Hugging Face’s BLOOM 176B.9 But they were not state of the art in 
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terms of performance because a smaller model can outperform a larger one if it is 
trained for longer on more data.  

In 2021, Google created a model called Chinchilla that used only 70 billion parameters 
paired with more training data to achieve increased performance. Before the Chinchilla 
paper, it seemed that trillion parameter models were just around the corner. Now the 
top-performing models often have fewer parameters than ones from years prior. This 
shift makes models that are easier and less expensive to use. It also means that 
parameter counts are not a great way to compare the performance of models. A better 
metric is how much compute was used to train them. Figure 1 shows the original trend 
for parameter counts with respect to compute budgets and the updated one based on 
insights from the Chinchilla paper. The current guiding trends, which are not public, are 
likely below the Chinchilla trend. 

Figure 1. Parameter Counts Correlate with Training Compute 

 
Source. CSET. 

According to the earlier trend in Figure 1, a trillion-parameter model would have cost 
about $25 million. For comparison, GPT-3 and BLOOM cost single-digit millions of 
dollars.10 Using the Chinchilla approach, a trillion-parameter model would cost about 
$650 million to train but would be much more capable than a $25 million trillion-
parameter model trained under the original trend.11 In Appendix A, we estimate that the 
$100 million that OpenAI claims to have spent on GPT-4 would put it at between 369 
and 520 billion parameters.12 In practice, GPT-4 probably uses several models, but each 
is probably smaller than this estimate because smaller models are less costly to 
operate. The question is then, with their only somewhat larger parameter counts, how 
much better are today’s models, and how much better again might the next generation 
be?  
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The Performance Benefits of Scaling 

An entire subfield has developed to predict the performance benefits of scaling AI 
models, and they have found simple mathematical equations that describe how the 
models improve when additional resources are applied to training.13 A common aspect 
of the model is its “loss,” which describes how much it deviates from the desired 
answers, but there are many other more intuitive aspects such as pass rates for math 
or programming challenges.  

The equations are typically power laws, where the amount that a capability improves 
is related to the amount of some resource, such as compute or data, raised to an 
exponent. This report focuses mainly on compute as the resource and presumes that 
enough data is available for compute to be the limiting factor.  

The existence of the power law implies that designers and funders can know some of 
the capabilities of a future system before it is made. They can make a series of small 
models and use those to predict the performance of a much larger model before 
deciding whether to build it. 14 This does not mean that all capabilities can be 
predicted. Power laws have not been found for all capabilities of interest, and there is 
conflicting evidence and debate as to what fraction of capabilities can be described by 
these equations even in theory. This report will return to that debate in a later section 
about emergence. 

Diminishing marginal returns 

As one specific example, OpenAI examined a range of models’ abilities to solve 
programming problems.15 As models grow, their performance improves according to 
the power law, but the OpenAI paper defines performance using a slightly complicated 
measurement called negative mean log pass rate.16 Figure 2 reproduces the original 
graph from the OpenAI paper on the left side. The right side of the figure shows the 
exact same graph but changes the axes to be more intuitive by converting the x-axis to 
dollars spent on training (assuming $100 million for GPT-4) and converting the y-axis 
to the probability that each program it writes will succeed at solving the problem. 17 
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Figure 2. Scaling GPT for Programming Has Diminishing Returns 

 

Source. CSET analysis of data from the GPT-4 Technical Report.18 

Converting to intuitive axes shows that there are diminishing marginal returns to 
increasing the computing budget. It suggests that a ten-million-dollar model would 
generate solutions that succeed about 64% of the time and this would increase to 74% 
for a one-hundred-million-dollar model.19 Extrapolating beyond the data in Figure 2, a 
trillion-dollar model would increase those odds to just over 91%. 

But simply scaling up the models to a trillion dollars would not lead to record 
performance. At the time of writing, the record on this programming challenge is 
94.4%.20 That top performer uses GPT-4 but adapts it for improved programming 
performance. Presumably, combining these adaptations with a model scaled beyond 
GPT-4 would lead to further performance gains, but currently, the gains are coming 
from being more inventive in using the models that already exist rather than simply 
scaling.21  

Emergence 

This predictability appears to be in contrast to what has been termed as emergent 
abilities. That is when scaling up models only leads to little performance improvement 
at first, but then appears to spike suddenly as models or compute budgets cross some 
threshold.22 These emergent abilities have gained substantial interest but it appears 
that many of them are artifacts of the way that the ability was measured rather than 
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being a true property of increasing scale.23 A common way for abilities to appear to 
emerge is when the answer has several parts and the model has to get them all 
correct. For example, in a multiplication problem, the model writes the answer one 
number at a time. If it gets any of those digits wrong then the whole answer is wrong. 
It does not get more credit for getting 80% of the digits than for getting 30% of them. 
As a result, the ability to multiply can appear to emerge suddenly once it is common to 
get all the digits correct, even if the ability to write each digit correctly only increases 
by a small amount. 

It may be that many complex tasks can be suddenly “unlocked” by small increases in 
model performance. Writing a best-selling novel, or perhaps writing original malware, 
are complex tasks and may not be easy to predict based on the error rate of a model 
during training. But it may also be that even these “emergent” abilities are more 
predictable than they seem. Although important tasks are often complex, it may be 
possible to break many of them down into simpler subtasks that are predictable by 
power laws. More research should be dedicated to trying to decompose important but 
complex tasks into predictable subtasks. That decomposition could be used to identify 
the performance thresholds that might unlock valuable or risky capabilities. This could 
provide much needed guidance to justify either increasing investments or imposing 
restrictions. 

Even if these models are powerful enough to justify the increasing costs for training, 
that is not the only cost they have to contend with. Larger models are also more 
expensive to run once they are trained.  
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Cost of Operation 

Operational costs depend on many factors such as the length and number of the input 
queries and how quickly the responses need to be written. Following the Chinchilla 
trend, inference costs grow with approximately the square root of the training costs.24 
That means spending 100 times more on training leads to a model that costs 10 times 
as much to operate. In terms of scaling analyses, a square root is considered a slow 
growth in cost, so this is potentially good news for companies looking to market 
powerful models. Still, bigger models are more expensive to operate and that cost 
growth can be significant. In Appendix B, we use the Chinchilla trend to derive the 
square root relationship and show the result in Eq A2. 

𝐶𝑜𝑠𝑡𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ≈ 2.35𝑥10−5√𝐶𝑜𝑠𝑡𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 
Eq 1 

As a rough estimate, and presuming again that GPT-4 cost $100 million to train, this 
equation would suggest that outputs cost about $0.24 per thousand tokens.25 If that is 
true then OpenAI might only be recovering half the cost of running it (they charge 
$0.12 per thousand tokens), which is consistent with early reporting that OpenAI was 
losing money with each output.26 It is also consistent with Google’s published 
inference costs.27 However, there are strong economic incentives to reduce operational 
costs. 

As mentioned earlier, companies probably make models that are smaller than the 
Chinchilla trend would project. That lends credence to the rumors that GPT-4 is 
actually a 220 billion parameter mixture of experts model rather than an 
approximately 500 billion parameter dense model as Chinchilla would imply.28 
Companies can also reduce costs by reducing the number of bits allocated to each 
parameter. Using these two effects brings operational costs down by a factor of six to 
about $0.04 per thousand tokens, which is consistent with Open AI CEO Sam Altman 
saying that each chat costs single-digit cents.29    

Companies will continue to work hard to find ways to reduce operational costs while 
continuing to improve performance. They may need to continue to increase the model 
sizes to achieve those performance gains, but there is a strong financial incentive 
against it. If a smaller model can do the job, then it will be preferred. 



Center for Security and Emerging Technology | 9 

 

Updating the Trends in Scaling 

Plans for building the largest future models are closely guarded, but some trends and 
incentives can provide clues about what to expect. 

Slowing growth 

Investment in training state-of-the-art models has been growing rapidly for about ten 
years but it appears to be slowing down.30 OpenAI’s famous GPT series is an example 
of this trend. The time between the first and second GPTs was about 250 days. Then 
the third took about 500 days. GPT-4 came about 1,000 days later. Now OpenAI 
claims to not be training a GPT-5, which is believable given the level of investment 
required, the diminishing marginal returns, and this slowing historical trend.31  

This slowdown can be seen most clearly from a dataset that attempts to track the 
compute demands of notable models. 32 Figure 3 shows only those models that used at 
least 10% as much compute as the previous record holder. Although compute 
demands continue to climb, the data matches far better to a kinked line with a 
slowdown than a straight one.33 

Figure 3. Training Compute Is Slowing for the Largest AI Models 

 
Source. CSET analysis of Epoch AI data.34 
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It is still possible for developers to train models that are substantially larger than the 
state of the art. It is unlikely, however, that anyone could train a model large enough 
that it could continue the trend observed for most of the 2010’s.35 It is also possible 
that the trend for all models, rather than just the most compute-intensive ones, is 
growing more smoothly, albeit at a lower total magnitude. That is a difficult question 
to test because it requires a dataset that is representative of all models.  

User Preference for Smaller Large Models 

There may also be less demand for model growth among users than previously 
anticipated. Hugging Face is a popular repository that has become the primary source 
for publicly available large models and they provide their download statistics for 
analysts to inspect.36 Hugging Face offers powerful models up to hundreds of billions 
of parameters but the most capable models are proprietary, so the data may be biased 
against users who need the highest performing models. Hugging Face users tend to 
choose smaller models even when larger, more capable ones are available. As of July 
2023, the two most popular language models had only 110 and 561 million 
parameters, a thousand times smaller than the state of the art, but each attracted over 
40 million downloads per month.37  

Overall, models below a billion parameters were far more popular both in terms of the 
number of models provided and the number of models downloaded per month. Figure 
4 shows the total number of downloads for models grouped by their parameter 
counts. On the left, it is difficult to even see the download counts for models above a 
billion parameters. To make the download counts more visible, we reproduce the same 
graph but with a logarithmic y-axis on the right. Large models seem to be hundreds or 
thousands of times less popular, with download counts in the tens or hundreds of 
thousands compared to hundreds of millions for models just below a billion 
parameters. 
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Figure 4. Small Hugging Face Models Are More Popular 

 

Source. CSET analysis of Hugging Face data.38 

As another example, Hugging Face offers all of the LLaMa models. The original LLaMa 
version 1 models came in four sizes are: 7B, 13B, 30B, and 65B, where B stands for 
billions of parameters. LLaMa2 comes in 7B, 13B, and 70B sizes. The smallest LLaMa 
model (7B) is by far the most popular, getting 25 times as many downloads as the 65B 
version, as shown in Figure 5. One possible reason is that the 7B parameter model 
performs adequately well, particularly for more narrow applications, and can readily 
run on a single GPU whereas the larger models typically require multiple GPUs. The 
larger models are more complex and expensive to operate. They can also be slower to 
run, which is not acceptable for all applications.39 
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Figure 5. Small LLaMa Models Are More Popular 

 

Source. CSET analysis of Hugging Face data.40 

Some Applications Do Not Benefit from Scaling 

Another possible reason for the popularity of small models is that some applications 
do not benefit as much from scaling either because they are intrinsically less complex 
or because the constraints of their application cannot accommodate large models. This 
may be more the norm than the exception as seen in a recent survey.41 The vast 
majority of researchers were working on tasks other than developing general-purpose 
language, imagery, or multimodal models that require such extreme scaling. Among 
top researchers across academia and industry, there was a wide range of compute 
demands over several orders of magnitude. 

The smaller models may also be popular because of limited data availability. For 
example, in many translation applications, it seems that there is not enough data to 
justify training larger models.42 This is especially true for what are called “low-
resource” languages which have little written text for translation, but it also applies to 
high-resource languages. Model sizes and compute budgets have remained modest 
while the field has focused more on ways to get past the data limitations.43 This is 
likely just one of many examples of a specialized task where a lack of data limits the 
value of scaling, but even for general-purpose AI, the demand for quality data might 
outstrip the internet.44 
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Distillation 

The field might also trend toward smaller models because of a process called 
distillation. Distillation uses the capability of a larger model to train a smaller one to 
have similar performance, though perhaps for a narrower range of applications. A 
prominent example was when Stanford researchers used just a few hundred dollars’ 
worth of outputs from ChatGPT to fine-tune the smallest LLaMa model (7 billion 
parameters). They called this fine-tuned model Alpaca and claimed that it performed 
comparably to ChatGPT according to human evaluators on a diverse range of tasks.45  

It is still an open question how effective distillation can be. After the release of Alpaca, 
other researchers showed that it was learning the style of writing more than the 
content, so it was not actually performing as comparably as initially suspected.46 But 
then further research improved on the technique for distilling content, closing the gap 
again.47 This back and forth may continue for some time.  

Ultimately, distillation of larger models to smaller ones is certainly possible to some 
degree and likely also has some limits. It may be that very broad capabilities such as 
general-purpose question answering require many parameters to store a lot of 
information. Those capabilities may be difficult to distill, but distillation may come with 
fewer sacrifices for more narrowly-scoped tasks.  

To capitalize on the efficiency of distillation, companies might train a large, highly 
capable general-purpose model and then use it to train many smaller models that are 
each more narrowly scoped and less expensive to operate. A challenge though is that 
if smaller models can be trained using a relatively small amount of output, such as the 
few hundred dollars spent for Alpaca, then users or other companies may also make 
their own distilled models. These copycat versions could undercut the company that 
built the original model, leaving them holding the bill for the initial training runs.48 In 
that way, distillation may help justify large initial investments to train a model, but it 
may also make those investments hard to protect. These dynamics create some 
uncertainty about the future of scaling in AI. 
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Expectations for the Future of Scaling 

Increased scaling will certainly lead to increased performance. That is the historical 
trend, and it will be a continuing trend, but continued scaling is increasingly expensive. 
Among the very largest models, that expense has likely already changed the trajectory 
of the trend, slowing it considerably. Companies appear to be more reluctant to 
increase their spending, and users are showing some preference for smaller models 
even when larger ones are freely available.  

The equations that predict how much progress to expect from additional investment 
suggest that there are sharply diminishing returns, at least in fundamental technical 
performance. That does not necessarily mean that the investments are not worthwhile. 
It may be that relatively small improvements in outputs are especially valuable. It does, 
however, mean that the proposed value or risk of that additional investment deserves 
extra scrutiny. 

From a more holistic perspective, there is a question of whether doubling down on the 
current compute trajectories is the path forward for AI. Research dollars can be 
allocated to the computers that train today’s models at tomorrow’s scale, or they can 
be allocated to discovering better model designs or training procedures or more 
inventive ways of using the models that already exist. Growing today’s models will 
certainly provide advances, but investment in fundamental research might lead to 
more efficient solutions. Fortunately, although there are many unknowns and 
uncertainties, these decisions can be at least partly guided by hard numbers. 
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Appendix A: Cost Estimates for Trillion Parameter Models and GPT-4 

Full price A100 GPUs are $32.77 per hour for 8 or $11.57 per hour for 8 on three-year 
reserve. Then $100 million buys between 24.4 million and 69.1 million GPU hours. 
Assuming GPUs do 163 teraFLOPS each results in between 1.43E25 and 4.06E25 
FLOP. Using the Chinchilla trend, that implies between 327 billion and 550 billion 
parameters. That is more or less consistent with Meta CEO Mark Zuckerberg saying 
that GPT-4 and PaLM are about ten times larger than LLaMA.49 The largest LLaMa 
model has 65 billion parameters, so ten times that is about 650 billion parameters. 

Appendix B: Derivation of Inference Costs 

The number of parameters is related to the computing cost for training according to the 
optimization laws and the price of compute. We multiply the quantity of compute by 
the three-year reserve pricing (cheapest consistent option) to estimate the cost of 
compute for training. We then do a simple linear fit to the data from the Chinchilla 
optimization law for log of parameter counts (N) vs. log of compute cost for training 
(𝐶𝑇) to get the following equation.50 

𝑙𝑜𝑔(𝑁) = 7.77 +  0.498𝑙𝑜𝑔(𝐶𝑇) Eq A1 

𝑁 =  107.77𝐶𝑇
0.498 Eq A2 

The cost of inference (𝐶𝐼) is significantly more complicated. Inference can be limited by 
the act of conducting the computations, the act of loading the parameters into memory, 
or the communications between processors. Which of these is limiting depends on 
many variables related to the model’s architecture, the number of tasks that can be run 
in the same request (batch size), the number of processors that share the task, and 
others.  

Currently in practice, loading data into memory is often the most constraining step.51 In 
general, each of the steps is likely to create similar delays because there is little to gain 
from accelerating one step if another is the bottleneck. For that reason, calculating the 
delays for one step is often a reasonable approximation for the others. Here we will 
calculate the delays (and therefore compute costs) for loading the parameters into 
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memory because it is often the primary bottleneck and because it involves 
conveniently few variables as shown in Eq A3.52 

𝐶𝐼 =
2𝑁

𝐴𝑚𝑏

𝑝

3600
 

Eq A3 

The time to load the parameters to memory is approximately the number of 
parameters (𝑁) times two for the two bytes per parameter (in half precision), divided 
by the memory bandwidth (𝐴𝑚𝑏). That number is in seconds, so to convert to cost we 
divide by 3600 to convert it to hours and multiply by the price per hour for a single 
GPU (𝑝). If multiple GPUs are used then the time would be divided by that number of 
GPUs but the price would also be multiplied by that number of GPUs, so the number of 
GPUs is dropped from the cost equation. We multiply the inference cost by 1,000 
because pricing is typically given per thousand tokens generated. 

Substituting Eq A2 into Eq A3 provides the inference cost as a function of the training 
cost. 

𝐶𝐼 = 1000
2 ∗ 107.77𝐶𝑇

0.498

𝐴𝑚𝑏

𝑝

3600
 

Eq A4 

Then we substitute 𝑝 = 11.57/8 = 1.446 from Amazon’s GPU pricing, and 𝐴𝑚𝑏 ≈ 2𝐺𝐵/𝑠 
from Nvidia’s documentation for the A100 GPU. And rounding the exponent 0.498 to 
0.5, 

𝐶𝐼 = 2.35𝑥10−5√𝐶𝑇 Eq A5 

There are substantial incentives for model developers to reduce these inference costs so it is 
reasonable to expect the costs to decrease over time as developers find various cost reduction 
techniques. Some examples techniques are training smaller models than the Chinchilla 
optimization would imply, model quantization, and distillation. 
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Appendix C: Power Laws for LLaMa Benchmarks 

Here we show the performance and fits to it for LLaMa1 across various benchmarks as 
reported in the LLaMa2 paper.53 LLaMa2 is not used because they appear to have been 
inconsistent in their training for the 34B version. Excluding the 34B version leaves only 
three data points to fit three power law parameters. As it is, the four versions of 
LLaMa1 provide only one parameter more than the minimum for fitting. We expect that 
there is a lot of error in these fits which is why they are relegated to this appendix and 
not detailed in the body of the report. 

The performance on some of these benchmarks should not be interpreted as the best 
that is possible. Further performance gains may still be possible where they appear to 
be saturated. For example, a task may be data limited and performance could improve 
with scale if the training set was adapted to have more data for that task. 

Figure D1. LLaMa1 Across Sizes and Benchmarks 

   

   

Source. CSET analysis of Meta data.54 
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