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Executive Summary 

The Department of Defense wants to harness AI-enabled tools and 
systems to support and protect U.S. servicemembers, defend U.S. 
allies, and improve the affordability, effectiveness, and speed of 
U.S. military operations.1 Ultimately, all AI systems that are being 
developed to complement and augment human intelligence and 
capabilities will have an element of human-AI interaction.2 The U.S. 
military’s vision for human-machine teaming, however, entails 
using intelligent machines not only as tools that facilitate human 
action but as trusted partners to human operators.  

By pairing humans with machines, the U.S. military aims to both 
mitigate the risks from unchecked machine autonomy and 
capitalize on inherent human strengths such as contextualized 
judgement and creative problem solving.3 There are, however, 
open questions about human trust and intelligent technologies in 
high-risk settings: What drives trust in human-machine teams? 
What are the risks from breakdowns in trust between humans and 
machines or alternatively, from uncritical and excessive trust? And 
how should AI systems be designed to ensure that humans can 
rely on them, especially in safety-critical situations? 

This issue brief summarizes different perspectives on the role of 
trust in human-machine teams, analyzes efforts and challenges to 
building trustworthy AI systems, and assesses trends and gaps in 
relevant U.S. military research. Trust is a complex and multi-
dimensional concept, but in essence, it refers to the human’s 
confidence in the reliability of the system’s conclusions and its 
ability to accomplish defined tasks and goals. Research on trust in 
technology cuts across many fields and academic disciplines. But 
for the defense research community, understanding the nature and 
effects of trust in human-machine teams is necessary for ensuring 
that the autonomous and AI-enabled systems the U.S. military 
develops are used in a safe, secure, effective, and ethical way. 

While the outstanding questions regarding trust apply to a broad 
set of AI technologies, we pay particularly close attention to 
machine learning systems, which are capable not only of detecting 
patterns but also learning and making predictions from data 
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without being explicitly programmed to do so. 4 Over the past two 
decades, advances in ML have vastly expanded the realm of what 
is possible in human-machine teaming. But the increasing 
complexity and unique vulnerabilities of ML systems, as well as 
their ability to learn and adapt to changing environments, also raise 
new concerns about ensuring appropriate trust in human-machine 
teams. 

With that, our key takeaways are: 

• Human trust in technology is an attitude shaped by a 
confluence of rational and emotional factors, 
demographic attributes and personality traits, past 
experiences, and the situation at hand. Different 
organizational, political, and social systems and cultures 
also impact how people interact with technology, 
including their trust and reliance on intelligent systems.  

o That said, trust is a complex, multidimensional 
concept that can be abstract, subjective, and 
difficult to measure. 

o Much of the research on human-machine trust 
examines human interactions with automated 
systems or more traditional expert systems; there 
is notably less work on trust in autonomous 
systems and/or AI.  

• Defense research has focused less on studying trust in 
human-machine teams directly and more on 
technological solutions that “build trust into the system” 
by enhancing system functions and features like 
transparency, explainability, auditability, reliability, 
robustness, and responsiveness.  

o Such technological advances are necessary, but 
not sufficient, for the development and proper 
calibration of trust in human-machine teams.   

o Systems engineering solutions should be 
complemented by research on human attitudes 
toward technology, accounting for the differences 
in people’s perceptions and experiences, as well 
as the dynamic and changing environments where 
human-machine teams may be employed.   
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• To advance the U.S. military vision of using intelligent 
machines as trusted partners to human operators, future 
research directions should continue and expand on: 

o Research and experimentation under operational 
conditions, 

o Collaborative research with allied countries, 
o Research on trust and various aspects of 

transparency, 
o Research on the intersection of explainability and 

reliability, 
o Research on trust and cognitive workloads, 
o Research on trust and uncertainty, and  
o Research on trust, reliability, and robustness.   

Human-machine teaming is, most basically, a relationship. And like 
with any other relationship, understanding human-machine 
teaming requires us to pay attention to three sets of factors—those 
focused on the human, the machine, and the interactions—all of 
which are inherently intertwined, affecting each other and shaping 
trust. For the defense research community, insights from research 
on human attitudes toward technology and the interactions and 
interdependencies between humans and technology can 
strengthen and refine systems engineering approaches to building 
trustworthy AI systems. Ultimately, human-machine teaming is key 
to realizing the full promise of AI for strengthening U.S. military 
capabilities and furthering America’s strategic objectives. But the 
key to effective human-machine teaming is a comprehensive and 
holistic understanding of trust.    
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Introduction  

The U.S. military has a long history of developing and deploying AI 
systems that have the ability to perform tasks that generally 
require human intelligence, including aircraft autopilots, missile 
guidance technology, and highly-automated missile defense 
systems.5 Humans, of course, have maintained a level of 
supervisory control—setting and monitoring tasks and goals, 
making safety critical decisions, and authorizing the use of lethal 
force. Over the past two decades, significant technological 
breakthroughs in the field of AI and most notably, advances in 
machine learning techniques, have expanded and diversified the 
ways in which humans can interact and collaborate with 
unmanned systems, robots, virtual assistants, algorithms, and other 
non-human intelligent agents. The Department of Defense, in turn, 
sees great potential in leveraging AI to redefine what is possible in 
the realm of human-machine teaming.     

The U.S. Army, for instance, is interested in autonomous vehicle 
technology to reduce the number of service members needed to 
run resupply convoys in combat environments.6 While the 
technology for fully autonomous vehicles does not yet exist, RAND 
researchers estimate that even a partially unmanned convoy—
where the lead truck with soldiers is followed by unmanned 
vehicles in a convoy—would put 37 percent fewer soldiers at risk 
compared to current practices.7  

The Air Force’s Skyborg program, meanwhile, envisions 
autonomous, low-cost drones with a suite of AI capabilities as 
partners for fighter jets. Here, the focus on human-machine 
teaming helps solve one of the key challenges in aerial combat: the 
fact that sensors and shooters are collocated on a single platform 
with a human operator in it. In the future, teaming up manned 
fighter jets with AI-enabled autonomous drones could allow the Air 
Force to put sensors ahead of shooters, put unmanned systems 
ahead of human-operated fighter jets, take greater risks or tolerate 
the loss of some systems to protect others.8   

That said, beyond certain information processing functions, current 
AI technologies (and more specifically, ML-based systems) are 
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largely not ready for operational deployment, in part due to their 
brittleness. These systems perform well in stable training and test 
environments but cannot yet reliably handle uncertain and      novel 
situations. For instance, investigations into the 2018 incident in 
which one of Uber’s self-driving cars killed a woman in Arizona 
revealed that while the automated driving system was able to 
recognize pedestrians with a high degree of accuracy in 
simulations, it wasn’t very good at detecting, classifying or 
responding to other objects on the road or to pedestrians behaving 
unexpectedly, such as jaywalking or walking alongside their bike.9  

ML-based systems are also vulnerable to adversarial manipulation 
and attacks that can pollute the training data or trick the machine, 
causing it to malfunction or otherwise fail in unpredictable ways. 
One popular example of adversarial manipulation involves an 
image of a turtle that an algorithm was fooled into believing was an 
image of a gun through pixel changes not visible to the human 
eye.10 These challenges and risks are even greater in a military 
context where the environment is inherently adversarial, uncertain, 
and lethal.  

While today’s intelligent systems are still largely tools and not true 
teammates, human-machine teaming technology is progressing. 
The Department of Defense is looking to build machines that can 
adapt to the environment and the different states of their human 
teammates, anticipate the human teammates’ capabilities and 
intentions, and generalize from learned experiences to operate in 
new situations.11 But for the U.S. military to fully capitalize on the 
advantages in speed, precision, coordination, reach, persistence, 
lethality, and endurance promised by such advances, soldiers will 
need to trust these intelligent machines. 

In the context of human-machine teaming, trust speaks to the 
human’s confidence in the reliability of the system’s conclusions 
and its ability to accomplish defined tasks and goals. Trust affects 
how people feel about and interact with technology, informing 
whether they choose to use, collaborate with, and rely on 
intelligent systems, and accept and follow the technology’s 
recommendations. National security leaders, military professionals, 
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and academics therefore tend to agree that trust is essential for 
effective human-machine teaming.  

Despite this apparent consensus, CSET research has found that 
few U.S. military research programs related to autonomy or AI 
focus directly on studying trust in human-machine teams.12 To an 
extent, this gap reflects the broader state of the field, where 
research, thus far, has been more focused on trust in automation 
and less on trust in advanced autonomy and AI.13 Moreover, 
considering that trust is an abstract concept that is difficult to 
measure directly, the defense research community seems to 
prioritize technology-centric approaches that seek to “build trust 
into the system.” Alongside assurance, such efforts entail 
developing and enhancing system features and capabilities closely 
related to trust, including transparency, explainability, auditability, 
reliability, robustness, and responsiveness.  

Technological advances in AI and robotics that extend the 
capabilities of machines, including the aforementioned trust-related 
system features, are of course necessary for progress toward 
advanced human-machine teaming. But without a better 
understanding of what it takes for military personnel to develop the 
kind of trust in their AI partners that they currently place in their 
fellow soldiers, sailors, airmen, and Marines, technology-centric 
solutions of this nature may not be sufficient. Rather than 
advocating for one approach or another, we simply suggest that 
insights from cognitive science, neuroscience, psychology, 
communications, and social sciences on human attitudes toward 
technology and the interactions and interdependencies between 
humans and intelligent machines can augment and refine systems 
engineering approaches to building trustworthy AI systems.  

This issue brief reviews research on the drivers and effects of trust 
in human-machine teams, assesses the risks posed by deficits in 
trust and uncritical trust, examines efforts to build trustworthy AI 
systems, and offers future directions for research on trust in 
human-machine teams relevant to the U.S. military. We focus on 
trust not as an end in itself. Rather, our goal is to help the defense 
and national security community develop a more holistic 
understanding of trust in human-machine teams to ensure that 
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DoD is able to implement its vision of using AI systems as trusted 
partners to human operators in a safe, secure, effective and ethical 
way.  
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Trust in Human-Machine Teams  

Research on human trust in technology encompasses many fields, 
including engineering, computer science, cognitive sciences, 
organizational behavior, and philosophy, each with different ways 
to define and measure this complex and multidimensional concept. 
For the purposes of this report, trust in the context of human-
machine teaming refers to the human’s confidence in the reliability 
of the system’s conclusions, and its ability to perform specified 
tasks and accomplish defined goals.14  

By emphasizing both a system’s conclusions and its ability to 
perform tasks, the above definition of trust applies to human 
interactions with different types of intelligent technologies—robots 
capable of taking action in the physical world, virtual agents or bots 
(i.e. a virtual assistant with a visual presence or a distinguished 
identity), or embedded AI that is invisible to the user (i.e. an 
algorithmic decision-support software).15 This distinction is 
important considering that the U.S. military’s vision for human-
machine teaming includes all of these different interactions. 
Moreover, there is evidence that the trajectory of human trust, as 
well as the factors that influence it, vary depending on the type of 
technology representation—namely, robotic, virtual, or 
embedded.16  

Trust affects the willingness of humans to use, collaborate with, 
and rely on intelligent technologies and accept their outcomes or 
recommendations. Trust is particularly relevant to human-machine 
interactions in military settings because of both the promise and 
the perils of autonomous and AI-enabled technology. Pairing 
humans with intelligent machines can help reduce the risk to U.S. 
service personnel, lighten the warfighters’ cognitive and physical 
load to improve performance and endurance, and increase 
accuracy and speed in decision-making and operations. Yet current 
AI systems (and more specifically, ML-based systems) are largely 
unprepared for operational deployment; they are vulnerable to 
adversarial manipulation and attack, and cannot reliably handle 
uncertain and new situations. Their misuse, malfunction or failure 
can cause unacceptable levels of damage.  
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Ultimately, as DoD’s AI ethics principles dictate, humans are 
responsible for the development, use, and outcomes of AI systems 
in both combat and non-combat situations.17 Thus, as the U.S. 
military moves to employ intelligent agents and systems as trusted 
partners to human operators, one of the most important questions 
it faces is how to ensure appropriate trust, contingent on machine 
capabilities and the context of the task at hand.18  This level of 
correspondence between the user’s trust and the technology’s 
capabilities, known as calibration, can influence the actual 
outcomes of technology use and the overall effectiveness of 
human-machine teaming.19 Too little trust in highly capable 
technology can lead to underutilization or disuse of autonomous 
systems, as well as lost time and efficiency; too much trust in 
limited or untested technology can lead to overreliance or abuse of 
autonomous systems. As we discuss later in the report, both pose 
significant risks and could undermine the effective use of human-
machine teams in military settings. 

Researchers measure trust in different ways. Some studies use 
psychophysiological measurements of trust. Examples include the 
use of electroencephalography (EEG) to capture the cortical activity 
of the brain and track changes in levels of anxiety, excitability, and 
vigilance, or facial expression analysis to classify negative and 
positive emotions and approximate trust in automated vehicles, for 
instance.20 Others rely on behavioral measures of trust, such as a 
user’s willingness to take the system’s advice and act on it or 
comply with requests. Surveys requiring participants to report their 
level of trust is another common measurement method that 
assesses people’s attitudes or sentiments toward technology using 
different scales.21  

Because trust can be an abstract, subjective, and relative concept, 
it is difficult to measure directly. Therefore, trust measurement 
often involves indirect assessments—measuring behaviors and 
actions influenced by trust or factors that influence trust. Overall, 
despite the progress in developing different scales and behavioral 
measures for trust, a recent review of empirical research on human 
trust in AI has found that “there is an urgent need for addressing 
variance in measures used to assess human trust in AI.”22  
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Systems engineering plays a pivotal role in engendering trust in 
human-machine teams. The underlying logic is that for humans to 
trust and use automated, autonomous and AI-enabled systems, 
trust can and should be “deeply embedded in the fabric of the 
system.”23 At every step of the technology lifecycle, developers 
(through close consultation with end-users) need to identify, 
specify, and integrate into the system the appropriate attributes, 
capabilities, and features that instill confidence and allow for 
proper trust calibration. For example, a soldier driving one of the 
trucks in a partially unmanned convoy needs to know what action 
the system will take if it encounters an obstacle. To support trust, 
this type of information extraction would then need to be built into 
the system as it is being developed—both the capability to extract 
a key single piece of information via what-if type queries and the 
capability to explain it in the operator’s language. In other words, 
this technological approach to engendering trust in human-
machine teams posits that such trust-cultivating capabilities can 
and should be specified in the original requirements, implemented 
in the design, and then certified through testing, evaluation, 
validation, and verification. Indeed, it is hard to imagine achieving 
the trust of operators without such system engineering. 

That said, as a 2017 Center for Naval Analyses report on AI-based 
technologies and DoD explains, “trust is not an innate trait of the 
system.” 24 Rather, trust is best thought of as a “relative measure of 
how a human operator (or operators)—whose own performance 
depends, in part, on collaborating in some way with the system—
experiences…and perceives the behavioral pattern of a system.”25 
An inquiry into the nature and implications of trust in human-
machine teams then first requires us to better understand what 
drives trust. As such, we must assess and synthesize insights not 
only from research on building trustworthy AI systems and 
research on the interactions and interdependencies between 
humans and technology, but also research on human attitudes 
toward technology. Human-machine teaming is, in essence, a 
relationship. While discussed separately throughout the next 
sections of the report, these three sets of factors—whether 
focused on the human, the machine, or the interaction—are 
inherently intertwined, affecting each other and shaping trust.   
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Understanding Human Attitudes Toward Technology 

Human trust as it pertains to technology, and more specifically, 
automated, autonomous and/or AI-enabled systems, can be 
organized in three categories: dispositional, situational, and 
learned.26 Dispositional trust refers to a human’s inherent tendency 
to trust automation, which varies based on a multitude of factors 
such as a person’s age, personality, or culture.27 For example, a 
global survey of 18,000 adults aged 16–64 found that younger 
generations trust AI more than older generations.28 Such 
discrepancies in dispositional trust could have significant 
implications for the future of human-machine teaming. If the effect 
is generational, as Millennials and Generation Z come to represent 
the majority of those serving in the U.S. military, we may see fewer 
barriers to trust in human-machine teams as AI-enabled systems 
are deployed and fielded. But if the effect is related to age rather 
than generation, there may be important discrepancies in how 
younger servicemembers relate to AI-enabled technologies 
compared to how those who are older (and are therefore more 
likely to be in higher positions of command) view AI.  

This survey also revealed that dispositional trust in AI varies by 
country of origin: 70 percent of respondents in China, for instance, 
said they trust AI compared to the 25 percent of those in the 
United States. Previous research on negative attitudes towards 
robots also reveals that cultural background plays an important 
role; yet in this study, U.S. participants exhibited the most positive 
perceptions.29 Cultural influences on trust in AI are relevant when 
thinking about how quickly and effectively U.S. competitors and 
adversaries could integrate AI into their military systems. Cross-
national variation in trust in AI technologies could also affect 
coordination in multinational coalitions like NATO. If commanders 
from some allied countries are more reluctant to trust and use AI-
enabled systems during multinational operations, such divergence 
could undermine coordination, interoperability, and overall 
effectiveness.30    

Situational trust refers to human attitudes towards technology and 
automation as influenced by different environmental factors, a 
person’s mental state, or the nature of the task. In high stress and 
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emergency situations, as well as when multi-tasking, research has 
found that people tend to overtrust recommendations made by 
machines even when other indicators suggest the system’s 
conclusions are wrong.31  

Lastly, learned trust is based on a person’s past experience with 
automation. Several studies show that even skilled pilots and air 
traffic controllers who have experience with highly reliable 
automated technologies exhibit automation complacency, meaning 
that they are worse at detecting system malfunctions under 
automation control compared with manual control.32 Training is 
another form of experience that speaks to users’ learned trust, 
which affects how individuals relate to technology. Yet evidence 
suggests that training can lead to both better performance due to 
lower complacency levels as users become more familiar with the 
baseline reliability of the system and over-reliance on automation 
due to familiarity and desensitization effects.33  

Taken together, people’s trust in technology is shaped by a myriad 
of dispositional, situational, and learned factors and experiences. 
Notably, these factors do not operate in isolation, but overlap and 
interact with one another. The 2003 friendly-fire incident involving 
the U.S. Patriot system—a highly automated missile defense 
system tasked with shooting down enemy missiles—is an 
instructive example.  

On April 2, 2003, after completing a mission over Baghdad, two 
U.S. Navy F/A-18 aircraft approached the area in central Iraq 
where Patriot batteries were positioned. The Patriot system 
misclassified the lead aircraft as a ballistic missile, issuing an (false) 
alert of an attack. The tactical director at the battalion command 
and control then ordered the subordinate battery fire units to “bring 
your launchers to ready.”34 With the system in automatic 
engagement mode, turning the launchers to ready resulted in an 
automatic engagement a few seconds later—killing the pilot of the 
F/A-18 and destroying the aircraft.   

Subsequent investigations partially attributed this friendly-fire 
incident (alongside the preceding fratricide involving a British 
Tornado aircraft) to operators’ “unwarranted and uncritical trust in 
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automation.”35 When considering the dispositional factors affecting 
trust, it is relevant that Patriot operators are relatively junior in both 
age and rank. On an organizational level, the U.S. Army air defense 
culture at the time “encouraged a posture of over-trust in 
technology.”36 Training and exercises, which cultivate learned trust, 
reinforced this culture of over-reliance on technology and 
automation.37 Specifically, Patriot operators were not sufficiently 
trained in scenarios emphasizing careful discrimination between 
hostile aircraft and missiles and friendly aircraft. In terms of 
situational factors, the high-stakes mission of ballistic missile 
defense against the explicit Iraqi threat of chemical attacks on 
advancing U.S. troops upped the stress and pressure that tends to 
lead to uncritical trust in technology and automation. Dispositional, 
situational, and learned factors therefore converged to cultivate 
excessive trust in the highly automated Patriot system, with tragic 
results.   

Much of this issue brief is focused on the relationship between 
individual operators and intelligent technology. Yet as the Patriot 
fratricide incident illustrates, different organizational, political, and 
social systems and cultures impact individuals’ attitudes, decisions, 
and behavior, including their trust and reliance on technology. As 
we turn to the discussion of trust calibration, it is important to 
recognize these broader structures are always at play.  

Calibrating Trust: Trust Gap and Automation Bias 

As with most of life’s questions, the answer to how much trust is 
needed for effective human-machine teams is, “it depends.” Proper 
calibration of trust means that the amount or level of trust humans 
place in machines is appropriate given the machine’s capabilities at 
that particular time and context. Having too little trust is a poor 
calibration which results in what researchers have called a “trust 
gap;” having too much trust is often referred to as “automation 
bias.” Both present unique risks and obstacles for the application of 
human-machine teams in military settings. 

A trust gap can develop due to dispositional factors, such as age or 
culture. Situational factors such as the task at hand can also play a 
role. For instance, research shows that humans are averse to 
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machines making morally relevant decisions when it comes to 
driving, legal matters, medical situations, and military operations.38 
But even when not dealing with life and death decisions, there is 
evidence that while algorithms generally outperform humans in 
forecasting and prediction tasks, people nonetheless trust and 
prefer human forecasts.39  

Part of the challenge of ensuring good trust calibration stems from 
a misalignment between human expectations and machine 
capabilities. Research shows that users tend to approach intelligent 
technologies, particularly virtual AI agents or bots and embedded 
AI such as an algorithmic decision-support software that is 
invisible to the user, with high expectations of their performance 
and high levels of initial trust.40 But when an error occurs, the 
contrast between what the system can do and what the human 
operator expects it can do can cause the human to overcorrect their 
expectations and assess the reliability of the system lower than 
warranted.41  

People seem quick to lose trust when the technology makes 
mistakes, especially early on in the interaction or mission, which 
speaks to learned trust, or more accurately, learned mistrust.42 
Breakdowns in trust, as some researchers suggest, could be 
repaired by providing situation-specific training to operators (i.e. 
enhancing learned trust) or by increasing the transparency of the 
system.43 Others argue that a system must offer enough value that 
humans feel as though it is worth forgiving when it fails.44 
Forgiveness may be contingent on dispositional factors and human 
judgment. But professional organizations such as the military have 
risk assessment and safety protocols that ultimately determine if a 
faulty system can be used again after malfunctioning. This brings 
attention to how the process of calibrating trust in human-machine 
teams is contingent not only on dispositional, situational, and 
learned factors at the level of the individual, but also on institutional 
and organizational procedures.45  

Regardless of the approach one takes to repairing trust, bridging 
the ‘trust gap’ may be a necessary prerequisite for deploying some 
of the AI technologies the U.S. military is currently researching. An 
instructive example is the Defense Advanced Research Projects 
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Agency’s (DARPA) experimentation program, Squad X, which 
partners infantry squads with AI and autonomous systems. In its 
most recent experiment, autonomous ground and aerial systems 
were used for sensing and surveillance to provide reconnaissance 
and improve situational awareness for infantry units moving 
through natural desert and mock city blocks. AI is used to 
synthesize the information accumulated through a network of 
warfighter and unmanned nodes, cutting through the noise to 
provide the squad members with actionable intelligence directly to 
their handheld devices. 46  With advances in real-time analytics and 
recommender systems technologies, such computational support 
could help warfighters gain the initiative in dynamic operational 
settings.47  But if human operators do not trust the system, they 
would be reluctant to follow its recommendations.48 Thus, without 
trust in human-machine teams, the U.S. military may not be able to 
capitalize on the advantages in speed, coordination, and precision 
AI promises to deliver. 

While distrust is a form of poor calibration where human trust falls 
short of the technology’s capabilities, over-trust or uncritical trust is 
another form of inappropriate reliance on technology, often 
described as ‘automation bias.’ Automation bias typically manifests 
itself in two types of errors: errors of omission, when people do not 
notice problems because the machine did not alert them, and errors 
of commission, where people follow automated commands or 
suggestions that are incorrect or inappropriate. Much of the 
research on automation bias comes from studies in aviation, 
including the analyses of incident reports citing overreliance on 
automated flight management systems as well as simulations and 
experiments.49  

For instance, one study tested for both types of errors on a group 
of 25 pilots in a simulated flight experiment.50 To test for 
commission errors, pilots were presented with an automated alert 
warning that the engine was on fire, though other engine 
parameters were normal and no other indicators of trouble 
appeared. The test for omission errors included misloading data 
such as altitude clearance and frequency change. While the pilots 
missed incorrect information and other automation failures 55 
percent of the time (omission error rate), all of the participants shut 
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down the engine in response to the fake fire alert, indicating a 100 
percent commission error rate.51  

Interestingly, the study also found that more experienced pilots 
were less likely to detect automation failures, pointing to how 
learned trust can exhibit itself through complacency and 
dependence on technology that builds up over time, especially 
when the system has proven itself reliable. Overall, the results, 
supported by other studies in aviation and health care, 
demonstrate that when automated decision aids are available, 
people tend to follow their cues.52  

To an extent, both errors of commission and errors of omission 
stem from the fact that humans tend to be “cognitive misers,” 
meaning they choose the option requiring the least cognitive effort 
and are not likely to seek alternative options.53 Evidence from other 
studies in human factors literature show that as it becomes more 
difficult for human operators to disaggregate the factors that 
influenced the machine’s decision, they become more likely to 
accept these solutions without question.54  

Notably, much of this research examines automated systems or 
more traditional expert systems that perform scripted tasks based 
on specified rules. These systems are less advanced than today’s 
machine learning systems, especially those using deep neural 
network approaches that reason, reach conclusions, provide 
recommendations, and take action in ways not evident or easily 
explained to humans.55 It is difficult to predict how such 
technological advances could affect trust in human-machine teams. 
The increased sophistication of intelligent technologies could 
amplify the inclination to over-trust complex systems. On the other 
hand, people may be reluctant to trust systems they do not 
understand. Such uncertainty only highlights the significant role 
broader social, organizational, and institutional structures and 
practices have in helping individual operators to properly calibrate 
trust depending on the capabilities and limitations of the system 
and the task at hand—serving as a bulwark against the risks that 
stem from both uncritical trust in technology and deficits in trust.56  
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Thus far, the discussion has focused on research studying human 
attitudes toward technology in order to better understand the 
drivers and effects of trust in human-machine teams. Yet a holistic 
understanding of trust in human-machine teaming accounts for all 
three—the human, the machine, and the team—each as its own 
unit of analysis. The following section therefore centers on AI 
system features, as well as the interactions and interdependencies 
between humans and intelligent technologies that facilitate the 
development of trust.  
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From Intelligent Tools to Trusted Partners 

For humans to properly calibrate trust—that is, to accurately gauge 
the extent to which an intelligent system can be relied upon given 
its capabilities, limitations, and the context at hand—they need to 
understand what a system can and cannot do in a given mission or 
environment, and why it makes the decisions it does. The 
transparency of the system, the capacity of the system to explain 
its decisions, the quality of communications between human and 
machine, and the reliability of the system in the present and future 
are all critical factors for calibrating trust and enabling effective 
human-machine teaming. Research and innovation has therefore 
focused on ways to ‘build in’ trust into autonomous and AI-enabled 
systems through features and functions that make these systems 
more transparent, explainable, auditable, reliable, robust, and 
responsive.57 

While the discussion below focuses predominantly on operators or 
end-users, technology-centric solutions to enabling trust in 
intelligent systems increasingly involve collaborative design 
between scientists, technicians, soldiers, and commanders, as well 
as efforts to test AI systems earlier in the development process to 
gather feedback. The capabilities and limitations of AI systems, 
however, change depending on the context at hand. Moreover, 
advanced AI systems are designed to continuously learn and alter 
themselves, even after they have been in operation. The 
trustworthiness of AI systems should therefore not be treated as 
static or permanent. 58 Indeed, this is partly why there are 
substantial challenges to testing, evaluation, validation, and 
verification of AI systems. While a comprehensive account of these 
issues is beyond the scope of this report, suffice it to say that 
senior defense leaders both outside and within the Pentagon 
recognize these challenges and are beginning to take steps toward 
reforming processes and practices that can accommodate a 
collaborative, holistic, and continuously evolving approach to 
building and deploying trustworthy AI systems.59   
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Transparency, Explainability, and Auditability  

Transparency is a critical aspect of trustworthy technologies and is 
essential for calibrating operator trust in a machine. But defining 
the type and level of information the intelligent system needs to 
convey to the human operator, as well as how to communicate said 
information so that it is understandable to humans, remain areas of 
open inquiry.  

When approaching the question of what information is important 
for transparency and trust in human-machine teams, researchers 
have looked into factors such as the intelligent agent’s current 
actions and plans, reasoning process, projected outcomes, and 
uncertainty. The Department of Defense’s Autonomy Research 
Pilot Initiative (ARPI), for example, conducted a series of studies 
exploring human interactions with an autonomous squad 
member—a robotic mule that accompanies a dismounted soldier 
squad within a simulated military environment. To determine how 
different configurations of information influence human 
perceptions of the autonomous squad member, the robot shared 
information about its current goal (e.g., to return to base), current 
priority (e.g., to save time), and its projected resource expenditure 
(e.g., how much extra fuel it needed to use to meet its goal given 
said priority). The study showed that participants’ situational 
awareness and understanding of the robot peaked when the robot 
displayed information about its intent, logic, and possible outcome 
while the addition of uncertainty information did not further 
enhance trust.60  

The finding regarding uncertainty information is notable, 
considering other research that shows humans perceive agents as 
more trustworthy when they convey uncertainty estimates and that 
doing so can also improve joint human-machine team 
performance.61 In other words, while information about uncertainty 
can be beneficial, it may also cause confusion and prove less useful 
depending on the mission environment or individual differences.62 
More research is therefore needed to better understand how 
uncertainty affects trust (as well as performance) in human-
machine teams.   
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Transparency about failures and errors is particularly important for 
trust in human-machine teams. As previously mentioned, humans 
are quick to lose confidence when a machine makes mistakes. The 
system should therefore be able to inform the user about the 
causes and the resulting impacts of the failure to the system and 
the mission, and ideally, also be able to present information on how 
to diagnose and mitigate the errors.63  

Related to transparency is the issue of explainability, or the ability 
of an AI system to explain its rationale to human users, articulate 
its strengths and weaknesses, and convey how it will behave in the 
future. There seems to be a consensus that in order to properly 
calibrate trust and use AI systems effectively, people need to 
understand how these systems work and why they reach the 
conclusions that they do.64 Research on explainability therefore 
tackles the black-box problem with AI (and more specifically ML-
based systems)—namely, that many algorithms, including those 
based on deep learning, are opaque to users, with few mechanisms 
available for explaining their reasoning and results. Part of the 
challenge is that while AI techniques such as decision tree 
induction have built-in explanations, so far they have been 
generally less accurate compared to more complex deep learning 
algorithms, which perform better but are less explainable.65 With 
the current state of the technology, developers therefore face a 
tradeoff in their choice of algorithm, whether to optimize for 
performance or for explainability—with both parameters being 
pertinent to achieving and maintaining trust in human-machine 
teams.  

One of the key DoD research initiatives in this area is DARPA’s 
“Explainable Artificial Intelligence (XAI)” program, focusing on three 
interrelated challenges: developing new ML techniques that 
produce more explainable models, designing new strategies and 
techniques for human-computer interaction and intelligent user 
interfaces for conveying effective explanations, and investigating 
the psychological requirements for effective explanations that help 
humans intuitively and quickly understand the system’s rationale.66 

XAI research raises the issue of communication in human-machine 
teams which speaks to both system design, (i.e. AI system 
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characteristics and functionalities) and the interactions between 
humans and intelligent technologies. As previously noted, different 
AI representations—physical robots, virtual bots, or embedded 
AI—evoke different cognitive and emotional responses that impact 
trust. The field of social robotics has shown that human-like design 
features, social behaviors, and implicit features and behaviors 
related to communication such as posture, head or eye movements, 
or changes in proximity can influence the human team member’s 
understanding and trust.67 The majority of fielded military systems 
today, however, have minimal anthropomorphic features. User 
displays, ubiquitous in human-machine teaming, are therefore 
particularly pertinent to communication in human-machine teams, 
and more specifically to how the system should convey information 
to best calibrate trust.  

User displays vary significantly in their design and functionalities 
depending on the nature of the human-machine interaction, 
including factors such as task allocation, decision-making authority, 
and environmental constraints. Across these different 
configurations, however, decisions about interface design, layout, 
and graphics that visualize information all have an impact on the 
operator’s perception of the system’s current plans, comprehension 
of the system’s behavior, and projection of future outcomes.68  

An intuitive, easy-to-use interface can improve the operator’s 
situational awareness and limit ambiguity by assuring human team 
members that the agent is aware of its environment. Such design 
can increase overall team performance by reducing communication 
times and minimizing errors. A smart, well-designed interface can 
even reduce the cognitive workload of human teammates by 
allowing the agent to perform tasks such as analysis, perception, or 
navigation best suited to its capabilities.69 However, there is a 
delicate balance between ease of use and ensuring trustworthiness 
through transparency: the most detailed interfaces that provide 
information about the intricate inner workings of the system may 
be transparent, but are not necessarily the most user-friendly or 
conducive to optimal operator performance and effective human-
machine teaming.    
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Currently, the technical challenges facing the development of 
displays and related audio or visual communication modalities are 
intertwined with the limits of AI technologies. Intelligent agents 
struggle with interpreting complex and ambiguous situations, 
understanding they have made a mistake and communicating the 
reasoning behind their decisions. With these underlying 
technological limitations, it is hard to know what type, how much, 
and how often information should be provided to the human 
operator. But as AI systems continue to evolve both technologically 
and socially, and human-machine teams proliferate across multiple 
tasks and domains, understanding the effects of displays on trust 
will become increasingly important. 

Finally, while much of the discussion above has focused on the 
factors influencing trust between human operators and technology, 
there are other forms of transparency that may influence the trust 
of other audiences and publics. One such approach to ensuring 
transparency speaks to the need for traceable and auditable data 
sources, design procedures, and development processes of AI 
systems. In the commercial space, technology companies such as 
IBM have made trust and transparency a part of their operating 
principles, pushing for greater clarity on who trains AI systems, 
what data is used in training, and what goes into an algorithm’s 
recommendations.  

DoD AI ethics principles also call for traceable AI systems, 
stressing that technical experts within DoD need to possess an 
appropriate understanding of the technology, development 
processes, and operational methods of its AI systems, including 
“transparent and auditable methodologies, data sources, and 
design procedure and documentation.”70 Documentation practices 
will help ensure that AI systems are used appropriately, 
responsibly, and ethically, and that users are able to calibrate 
expectations and trust in what the system can and cannot do in a 
given context.71 Moreover, auditability may prove useful for 
restoring trust in the event of machine malfunction or an accident, 
providing a track record of what happened and how such incidents 
can be avoided in the future.  
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Reliability, Robustness, and Responsiveness 

Whether the operator can trust the AI system to function properly 
is perhaps the most fundamental question in human-machine 
teaming. Indeed, while transparency and explainability are 
important for calibrating trust, reliability may be even more critical. 
For instance, one of the aforementioned ARPI studies found that 
participants’ trust in the autonomous squad member declined 
when the robotic mule made errors, and that displaying information 
to support transparency did not mitigate the impact of the errors 
on trust. On the other hand, when the autonomous squad member 
was reliable, participants anthropomorphized the agent more than 
when it was unreliable, ranking it as more likable, intelligent, and 
safer to work with.72 Another study in which a human teammate 
worked with a robot in reconnaissance missions found a similar 
trend: when the robot’s ability was high and it proved reliable, the 
explanations it provided about its decisions had no significant 
impact on trust.73 While these studies suggest reliability may trump 
transparency and explainability for engendering and calibrating 
trust in human-machine teams, additional research on the 
interaction between reliability and explainability could offer further 
clarity and nuance.  

Alongside reliability and robustness, advances in machine 
intelligence and capabilities that allow the technology to interact 
with the environment and be responsive to users also impact trust. 
Responsiveness, adaptability, cooperation, and pro-social behavior 
of intelligent technologies strengthen cognitive trust by raising 
expectations of high-quality performance and positive experience 
during mutual tasks or missions.74 Machine behaviors that reflect 
social intelligence like active listening and personalization have also 
been linked to higher levels of emotional trust, with users reporting 
greater levels of engagement, likeability, and enjoyment.75 
Moreover, experimental research shows that cooperative behavior 
of intelligent agents can increase human-machine team 
performance as well as support resilience.76  

There are non-negligible technical challenges to progress in 
research centered on ensuring that AI systems are reliable, robust, 
and responsive, especially in complex adversarial environments. 
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That said, experimentation and fielding of certain systems earlier in 
the development cycle can provide an opportunity for incorporating 
user feedback that helps the system learn and improve, as well as 
for building trust in human-machine teams. According to Mark 
Lewis, former Acting Deputy Under Secretary of Defense for 
Research and Engineering, one of the main goals is to figure out 
which AI applications will have the biggest impact on the warfighter. “In 
some cases,” Lewis explained, “that means getting the 
technologies in the hands of the warfighter and having them play 
with them, experiment with them, and figure out what makes their 
job more effective … [and] easier,” as well as “to discard the things 
that don’t buy their way into the war fight.”77 

One example of such efforts is DARPA’s Air Combat Evolution 
(ACE) program which aims to increase warfighter trust in 
autonomous systems by using human-machine collaborative 
dogfighting (air-to-air combat) as its initial challenge scenario. As 
AI systems train in the rules of aerial dogfighting, their performance 
will be monitored by fighter instructor pilots which will help mature 
the technology. Once the human pilots feel the AI algorithms are 
trustworthy in handling the bounded and predictable environment, 
aerial engagement scenarios will grow more difficult and realistic, 
eventually going from virtual testing to demonstrating dogfighting 
algorithms on live, full-scale manned-unmanned teams.78  

As a whole, building transparent, explainable, auditable, reliable, 
robust, and responsive intelligent systems will help foster 
appropriate trust in human-machine teams. Continual feedback 
between humans—developers, operators, commanders—and 
machines during the entire lifecycle of a system is another key 
element of the systems engineering approaches that seek to ‘build 
in’ trust into the intelligent machines. Such feedback is also 
instrumental to what some have referred to as a human-centric 
approach to AI development which seeks to integrate the needs, 
perceptions, and behaviors of the user into the design of AI 
systems.79 That said, technological solutions alone cannot solve the 
trust problem in human-machine teams.  
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U.S. Military Research: Gaps and Future Directions   

In October 2020, CSET published a report on U.S. military 
investments in autonomy and AI, analyzing publicly available data 
from the FY2020 research, development, testing, and evaluation 
budget justification books of the Army, Air Force, Navy, and 
DARPA, focusing specifically on basic, applied, and advanced 
research.80 The findings showed that human-machine collaboration 
and teaming is a crosscutting theme across autonomy and AI 
research and development programs related to unmanned 
systems, information processing, decision support, targeting 
functions, and other areas. That said, only 18 of the 789 research 
components related to autonomy and 11 out of the 287 research 
components related to AI mentioned the word “trust.”*81 

There are a number of possible explanations for this apparent gap. 
For one, while there is a rich literature on human-automation 
interactions, and the role of trust therein, there is far less research 
on human-autonomy and human-AI interactions, and specifically 
on trust in human-autonomy and human-AI teams.82 Technology, it 
seems, has outpaced research on human-machine teaming. The 
U.S. military is developing autonomous systems capable of 
performing an ever-increasing range of tasks with limited, if any, 
human supervision and ML-based systems that learn and adapt to 
their environment. Yet much of what we know about trust in 
intelligent technologies still draws on research examining human 
interactions with automated systems and more traditional expert 
systems. The gap in research on trust in autonomy and AI in DoD’s 

 

* While we found relatively few instances where the word “trust” was 
mentioned, descriptions of different autonomy and AI research initiatives also 
included other keywords that signal research related to trust in human-machine 
teams, including but not limited to: assurance, reliability, robustness, resilience, 
predictability, explainability, interpretability, transparency, etc. These system 
features and characteristics are pertinent to trust, and can be thought of as 
elements of trust and components of effective human-machine teaming. But 
they are not synonymous with trust. 
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science and technology program reflects the broader state of the 
field.83  

Furthermore, as previously noted, trust is a complex, abstract and 
hard to measure concept. Defense research therefore tends to 
favor technology-centric approaches geared more directly toward 
enhancing AI system attributes that are related to trust, including 
security, robustness, resilience, and reliability. DARPA leads in 
research focused on developing systems that behave reliably in 
operational settings and strengthening security in the face of 
adversarial attacks, with programs such as “Guaranteeing AI 
Robustness against Deception (GARD),” “Lifelong Learning 
Machines (L2M),” and “Assured Autonomy.”84 The Army also has 
several relevant initiatives. For instance, as part of its basic 
research portfolio, the “Army Collaborative Research and Tech 
Alliances” effort includes research on “AI-enabled cyber security 
that is robust to enemy deception,” supporting “Army counter-AI 
against near-peer adversaries.”85    

These efforts represent systems engineering approaches that seek 
to “build trust into the system,” and are indeed necessary for 
establishing and properly calibrating trust in human-machine 
teams. But they are not sufficient.  

For intelligent machines to become true teammates, they need to 
be able to adapt to changing and new environments. The U.S. 
military has a number of research programs focused on assurance 
approaches for systems with advanced levels of autonomy that 
continue to learn and evolve after they are deployed. Yet the very 
ability to learn and adapt to the environment, as Heather Roff and 
David Danks argue, could undermine the human team members’ 
trust. 86   

Trust, in both human and human-machine relationships, is built on 
repeated interactions that provide information about values, 
preferences, beliefs, and other factors that help develop shared 
goals and expectations, as well as allow people to evaluate risk, 
especially in high-stakes situations. But as the AI system learns 
and adapts, it may change, often in ways that are unexpected or 
not understandable to humans. As Roff and Danks assert, “the 
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battlespace is a dangerous place to be figuring out the preferences 
and values of a dynamically adapting weapon, so it is unsurprising 
that trust will be difficult to establish.”87  

Indeed, one of hardest challenges related to adaptive machine 
learning and trust in human-machine teams is how to ensure that 
the trust that has been “earned” by a system in a predictable, fixed 
environment translates not only to different, dynamic 
environments, but also to different machines as new team 
members and/or with new human team members.88 Dispositional 
factors such as age, gender and cultural background impact 
people’s attitudes and trust in technology. People behave 
differently and often unpredictably under stress and in high-stakes 
situations. Emotional factors, previous experiences with intelligent 
technologies as well as broader institutional and societal 
structures, and organizational culture all play a role in shaping the 
nature of trust in human-machine teams. Thus, while trust 
requirements built into a given system may cultivate appropriate 
trust in a particular human-machine team, there is no guarantee 
this “built in” trust holds for new human team members.89  

For example, a recent study from the Army Research Lab examined 
soldiers’ trust in their robotic teammates in autonomous driving 
scenarios by grouping individuals in four different categories based 
on “demographics, personality traits, responses to uncertainty, and 
initial perceptions about trust, stress, and workload associated with 
interaction with automation.”90 Based on a facial expressivity 
analysis, the researchers found that these groups had unique 
differences in their responses and attitudes toward the driving 
automation. The study therefore concluded that trust calibration 
metrics may not be the same for all groups of people and that 
trust-based interventions, such as changes in user display features 
or communication of intent, “may not be necessary for all 
individuals, or may vary depending on group dynamics.”91 

This report does not advocate for the study of trust as an end to 
itself. Rather, we suggest that research focused explicitly on the 
drivers and dynamics of trust in human-machine teams can 
augment technology-centric approaches to building trust into AI 
systems. With this in mind, we offer the following directions for 
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continued and additional research that could contribute to 
advances in human-machine teaming and the development of 
trustworthy AI systems. 

• Multidisciplinary research on the drivers of trust in human-
machine teams, specifically under operational conditions. 
Research on human-machine trust, including scholarship 
that applies sophisticated computation models of cognition 
to understand issues such as knowledge acquisition and 
problem solving, is predominantly conducted under closely 
controlled laboratory conditions.92 More research is needed 
to assess whether these findings withstand complex real-
world conditions and tasks.  

• Collaborative research between U.S.-based researchers and 
defense research communities in allied countries to assess 
how cross-cultural variation in trust in human-machine 
teams may impact interoperability in multinational 
operations. 

• Research to assess what aspects of transparency are most 
relevant for calibrating trust in human-machine teams, 
especially under operational conditions. For instance, how 
important is explainability vs. auditability, i.e., is the ability to 
understand how AI systems reach a particular conclusion 
more conducive to building, maintaining, and adjusting trust 
in human-machine teams than visibility into the data and 
models?  

• Research on the interaction between explainability and 
reliability. While there seems to be a consensus that in order 
to trust their machine teammates, humans need to 
understand why autonomous and AI-enabled systems 
behave as they do, some research suggests that as long as 
the system is reliable, explainability is less important. 
Additional research could help connect and contextualize 
these seemingly contrasting views.     

• Research on shifts in cognitive workloads and trust 
calibration across different types of human-machine 
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teaming. For example, research on autonomous vehicle 
technology for Army convoy operations shows that in a mix 
of manned and unmanned trucks, the soldiers who remain in 
the convoy would perform more tasks involving sensing and 
decision-making, resulting in a higher cognitive burden than 
their counterparts in a fully manned convoy (where cognitive 
burden can be shared across a larger number of soldiers).93 
This is significant considering there is evidence that users 
make more automation bias errors under higher workload 
conditions, when performing complex tasks or 
multitasking.94 As such, there is a need for more research on 
how the distribution of tasks and decision-making 
responsibility in human-machine teams (and the resultant 
shifts in cognitive workloads) affect trust specifically in 
military settings. 

• Research on uncertainty and trust calibration. What aspects 
of uncertainty are most critical for humans to understand in 
order to calibrate trust and use the system effectively, and 
how should this information be communicated?   

• Research on reliability and trust calibration. Keeping in mind 
the growing urgency to field military AI systems, what are 
the minimum standards for AI system reliability, robustness, 
and resilience necessary for building and maintaining trust in 
human-machine teams? How do these standards vary 
based on operator characteristics, mission, environmental 
conditions, and the distribution of tasks and decision-
making authority within the human-machine team? 

While this is certainly not an exhaustive list, we believe additional 
research on these topics could help advance the U.S. military’s 
vision of using intelligent machines as trusted partners to human 
operators as well as further the development of reliable, 
trustworthy, and safe AI systems that would cement U.S. military 
and technological advantages into the future.  
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Conclusion  

The U.S. military sees many uses for human-machine teams, and 
with advances in AI technology, machines will be able to take on a 
greater variety of tasks and responsibilities, extending human-
machine teaming to additional mission areas and functions. But 
progress toward advanced human-machine teaming will depend 
on advances in understanding human attitudes toward technology 
as well as breakthroughs in AI technologies, making these systems 
more transparent, explainable, auditable, reliable, robust, and 
responsive.  

We offer a number of research directions that could help the U.S. 
military move forward with its vision of using intelligent machines 
as trusted partners to human operators: greater emphasis on 
research and experimentation under operational conditions; 
collaborative research with allied countries; research on trust and 
various aspects of transparency; research on the intersection of 
explainability and reliability; research on trust and cognitive 
workloads; research on trust and uncertainty; and research on trust 
and reliability.  

As the U.S. military integrates AI technologies and capabilities into 
the force, resolving outstanding questions around the issue of trust 
in human-machine teams becomes increasingly imperative. There 
are no simple solutions and no single approach will suffice. But 
insights from research on the dispositional, situational, and learned 
factors that shape trust as well as the broader institutional and 
societal structures that influence people’s attitudes and behaviors 
toward technology can inform and strengthen systems engineering 
approaches to building trustworthy AI.  
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