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Techniques to Make Large Language Models Smaller: An Explainer 

By Kyle A. Miller and Andrew J. Lohn 

Large language models (LMs) are often difficult and expensive to train and use.1 For 
example, the models that power ChatGPT are large––with at least 175 billion 
parameters––and cost millions of dollars in compute to train. Moreover, dozens of 
high-end processors are needed to run the models (also known as inference), which 
becomes expensive when ChatGPT is supporting millions of user requests daily.2 
These resources are out of reach for most individuals and less well-resourced 
organizations, including many in academia. At first glance, it seems that there is a high 
barrier to entry; a “moat” surrounding large technology companies that have the 
resources to develop large LMs and use them at scale.3 

However, there are techniques to produce smaller and more efficient LMs that require 
fewer resources to develop and operate—and many of them are openly available 
online for anyone to use. The combination of both small (i.e., easy to use) and open (i.e., 
easy to access) could have significant implications for artificial intelligence 
development, including: 

● Accelerating AI research and innovation. These models can be developed more 
quickly, in more dynamic and customized ways, and by more people than large 
proprietary models. 

● Lowering the barrier to entry in certain areas of AI development, accelerating 
model proliferation, and complicating governmental regulatory efforts. This has 
second-order implications for AI safety, misuse, and malicious use. 

● Allowing U.S. competitors to be fast followers and leverage the open software 
for their own ends.  

This explainer outlines some of the techniques used to create smaller models. 
Presently, smaller models are generally less capable than the largest LMs, but there 
are indications that they are still valuable to a broad set of researchers and developers. 
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Techniques 

Here, we assess two broad groups of techniques to build smaller LMs:   

A. Start Small and Stay Efficient: Develop smaller models that use fewer 
resources from the outset, or fine-tune and operate models in a way that 
requires fewer resources. 

B. Get Small (Compression and Knowledge Distillation): Make larger models 
smaller so they are easier to train and run, or transfer the knowledge of larger 
models to smaller models. 

One reason to start small is to avoid the computing overhead of large models during 
training and inference. This option promotes a degree of ground-up efficiency and 
reduces the resources (e.g., compute and memory) used across many parts of model 
development and deployment.  

We outline four techniques to start small and stay efficient. 

1. Design a model with fewer parameters. Here, we generally mean models that 
can run effectively on a single high-end GPU. These are typically models with 
fewer than 7 billion parameters, but depending on various factors, can even 
include models with up to 70 billion parameters. Such models typically require 
less compute and memory to run or fine-tune (depending on the task and 
quantity of data), although they usually do not perform as well as larger 
models.4 

2. Prioritize data quality over data quantity. Use less, but better, data to train 
smaller models on a lower compute budget without sacrificing performance.5 
Higher-quality data can be harder to collect and curate, but you typically need 
less of it. Since model size and dataset size are often scaled together, a smaller 
dataset may allow for a smaller model.6 

3. Build a model for a particular domain or task. Large LMs that exhibit general 
knowledge and wide-ranging capabilities need many parameters to encode that 
vast knowledge. Smaller models designed for a specific task may require fewer 
parameters to encode the more limited knowledge required for that task.  
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4. Fine-tune models efficiently. Fine-tuning involves feeding more data to a 
trained model so it hones the ability to perform certain tasks. While this requires 
less compute and memory than the original training, it can still be difficult to 
fine-tune an entire model. To circumvent this bottleneck, there are techniques to 
further reduce those resource demands, such as by updating the most important 
parts of a model while keeping the rest of it “frozen.”7 

Next are techniques to get small by compressing larger language models or distilling 
their knowledge. This generally involves making larger models smaller and more 
efficient, or distilling knowledge from larger models to smaller models, thereby 
reducing the compute and memory needed to run or improve them.8 

We outline three techniques to get small. This is not an exhaustive list, rather an 
overview of some popular techniques. 

1. Reduce the memory used for each parameter in a model. Each parameter is 
held using some number of bits. For example, a high-precision model may have 
64 bits for each parameter, which can be reduced to 16 bits. With fewer bits, 
each parameter is less precise but requires less memory and compute to run or 
train. Importantly, there are limits to how much precision can be reduced, with 
2-bit precision being considered the extreme lower bound.9 

2. Transfer knowledge from a large model to a smaller one. One technique is to 
“distill” a subset of a large model's superior knowledge and capabilities into a 
smaller model, analogous to how an older teacher transfers some of their 
knowledge to a younger student. Here, the outputs of a larger, more capable 
model are used to fine-tune a smaller model. Researchers are still determining 
how well smaller student models can retain the generality of their larger 
teacher models.10 However, it may be possible for developers to improve 
smaller and cheaper models by distilling knowledge from expensive and 
proprietary models, such as those behind ChatGPT.11  

3. Prune redundant or unnecessary parts of a larger model. This reduces the 
number of parameters with only a limited impact on performance because the 
pruned parameters are chosen specifically because of their low importance.12 
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Ultimately, small and open models are impacting AI innovation, proliferation, 
regulation, and international competition––and the above methods are lowering the 
barriers to entry to develop and use them. Although the performance of these models 
is generally poorer than large, proprietary models, many people opt to use them due to 
their accessibility and customizability. Moreover, if the performance of these models 
continues to increase, even on narrow tasks, then their use will likely also increase. As 
these open models continue to multiply, it will be increasingly difficult to track how 
they are used or control their diffusion through policies such as compute-based export 
controls. 
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