
 
 

 

 

MARCH 2021 

Key Concepts in AI Safety:  
Robustness and Adversarial  
Examples 

CSET Issue Brief 

AUTHORS 

Tim G. J. Rudner 

Helen Toner 

 

 



 Center for Security and Emerging Technology | 1 

This paper is the second installment in a series on “AI safety,” an 
area of machine learning research that aims to identify causes of 
unintended behavior in machine learning systems and develop 
tools to ensure these systems work safely and reliably. The first 
paper in the series, “Key Concepts in AI Safety: An Overview,” 
described three categories of AI safety issues: problems of 
robustness, assurance, and specification. This paper introduces 
adversarial examples, a major challenge to robustness in modern 
machine learning systems. 

Introduction 

As machine learning becomes more widely used and applied to 
areas where safety and reliability are critical, the risk of system 
failures causing significant harm rises. To avoid such failures, 
machine learning systems will need to be much more reliable than 
they currently are, operating safely under a wide range of 
conditions.1 In this paper, we introduce adversarial examples—a 
particularly challenging type of input to machine learning 
systems—and describe an artificial intelligence (AI) safety 
approach for preventing system failures caused by such inputs. 

Machine learning systems are designed to learn patterns and 
associations from data. Typically, a machine learning method 
consists of a statistical model of the relationship between inputs 
and outputs, as well as a learning algorithm. The algorithm 
specifies how the model should change as it receives more 
information (in the form of data) about the input–output 
relationship it is meant to represent. This process of updating the 
model with more data is called “training.” 

Once a machine learning model has been trained, it can make 
predictions (such as whether an image depicts an object or a 
human), perform actions (such as autonomous navigation), or 
generate synthetic data (such as images, videos, speech, and text). 
An important trait in any machine learning system is its ability to 
work well, not only on the specific inputs it was shown in training, 
but also on other inputs. For example, many image classification 
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models are trained using a dataset of millions of images called 
ImageNet; these models are only useful if they also work well on 
real-life images outside of the training dataset. 

Modern machine learning systems using deep neural networks—a 
prevalent type of statistical model—are much better in this regard 
than many other approaches. For example, a deep neural network 
trained to classify images of cats and dogs in black and white is 
likely to succeed at classifying similar images of cats and dogs in 
color. However, even the most sophisticated machine learning 
systems will fail when given inputs that are meaningfully different 
from the inputs they were trained on. A cat-and-dog classifier, for 
example, will not be able to classify a fish as such if it has never 
encountered an image of a fish during training. Furthermore, as the 
next section explores in detail, humans cannot always intuit which 
kinds of inputs will appear meaningfully different to the model. 

Adversarial Examples 

One of the most significant current challenges in AI safety is 
creating machine learning systems that are robust to adversarial 
examples. Adversarial examples are model inputs (for example, 
images) designed to trick machine learning systems into incorrect 
predictions. In the case of a machine learning system designed to 
distinguish between cats and dogs, an adversarial example could 
be an image of a cat modified to appear to the model as a dog. 
Since machine learning systems process data differently from 
humans, the cat image could be altered in ways imperceptible to 
humans but meaningfully different to the machine learning system. 
The modified image may still resemble a cat to humans, but to a 
machine learning system, it “looks like” a dog.  

Adversarial examples can be generated systematically, either by 
digitally altering the input to a system or by directly altering the 
appearance of objects in the physical world. Unlike other 
adversarial attacks, such as “data poisoning,” which seeks to attack 
the algorithm used to train a machine learning model, adversarial 
examples are designed to attack already trained models. 
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Figures 1 and 2 show systematically generated adversarial 
examples. Specifically, the adversarial example in Figure 1c digitally 
modifies the original image by an imperceptibly small amount, 
whereas the adversarial example in Figure 2b is created by adding 
patches to the image designed to mimic irregularities found in the 
physical world (such as graffiti or stickers). Both adversarial 
examples are generated via so-called white-box attacks, which 
assume the attacker knows how the trained classification model 
works and can exploit this knowledge to create adversarial 
examples that trick the model into making incorrect predictions. 

Figure 1. An example of a “white-box” adversarial example from Goodfellow et al. 
(2015). The original image (a) is classified as “panda” with 57.7 percent 
probability. After being overlaid with a minimal amount of noise—the adversarial 
alteration (b) multiplied by a factor of 0.007—the resulting image (c) is classified 
as “gibbon” with 99.3 percent probability. The difference between (a) and (c) is 
imperceptible to the human eye. 

 
                      a) Original image              b) Adversarial alteration          c) Adversarial example 

Source: Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy, “Explaining 
and Harnessing Adversarial Examples,” International Conference on Learning 
Representations, Vol. 3, San Diego, CA, USA, May 7-9, 2015, 
https://arxiv.org/abs/1412.6572. 
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Figure 2. An example of a white-box adversarial example designed to generate 
physical alterations for physical-world objects. The adversarial alteration (b), 
which is designed to mimic the appearance of graffiti (a), tricks an image 
classifier into not seeing a stop sign. 

 
                                                     a) Graffiti on stop sign               b) Adversarial Example            

Source: Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, 
Chaowei Xiao, Atul Prakash, Tadayoshi Kohno, Dawn Song, "Robust Physical-
World Attacks on Deep Learning Visual Classification,” 2018 IEEE/CVF 
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, 
USA, June 18-23, 2018, pp. 1625-1634, https://arxiv.org/abs/1707.08945. 

Although modern machine learning systems usually generalize 
remarkably well to data similar to the data used for training, 
adversarial examples can be created from surprisingly simple 
modifications to model inputs. Changes such as blurring or 
cropping images, or altering the appearance of the physical-world 
objects shown in an image, can fool an otherwise reliable system. 
In Figure 3b, an adversarial example is constructed by reducing the 
resolution of the original image, thereby changing the model’s 
prediction from correct to incorrect. Unlike the adversarial 
examples in Figures 1 and 2, the adversarial example in Figure 3 
was created via a black-box attack—that is, created without access 
to the trained classification model. It is not as subtle as the 
alteration in Figure 1 and not as targeted as the alteration in Figure 
2. However, it demonstrates that modern machine learning 
systems can be fooled with little effort and no knowledge of the 
prediction model. 
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Figure 3. An example of a black-box adversarial example. The original image (a) 
is classified as “washer” with 53 percent probability. The image is altered by 
reducing its resolution to create an adversarial example (b), which is classified as 
“safe” with 37 percent and as “loudspeaker” with 24 percent probability. 

     
                                            a) Original image                    b ) Adversarial example 

Source: Alexey Kurakin, Ian Goodfellow, and Samy Bengio, “Adversarial  
Examples  in the Physical World,” arXiv [cs.CV] (February 11, 2017), preprint, 
https://arxiv.org/abs/1607.02533. 

Robustness to Adversarial Examples 

Robust machine learning systems need to be able to identify data 
that is meaningfully different from training data and provide a 
defense against adversarial examples. There are a wide range of 
different research areas attempting to make progress in this 
direction. One such research direction aims to incorporate 
predictive uncertainty estimates into machine learning systems. 
This way, any prediction from the system would come with an 
estimate of certainty. If the machine learning system indicates 
uncertainty about the correctness of its prediction, a human 
operator can be alerted. 

To understand predictive uncertainty estimates and how they can 
make machine learning systems more robust to adversarial 
examples, consider the classification “probability scores” given in 
the descriptions of Figures 1 and 3. In reality, these scores, which 
express the probability of an input belonging to a certain class (e.g., 
the class “cat” or “dog”), are misleading. While they do express a 

https://arxiv.org/abs/1607.02533
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probability, they do not actually express the model’s level of 
certainty about the correctness of the predictions.  

To fully understand this point, consider a machine learning system 
trained to distinguish between two classes: cats and dogs. Such a 
system will by design have two outputs: one for the class “cat” and 
one for the class “dog.” If the model is given an image of a dog, it 
will output values between zero and one for each class—for 
instance, 90 percent and 10 percent for the classes “dog” and 
“cat,” respectively, so that the values sum up to 100 percent. 
However, if given an image of a fish, the model will still make 
predictions for the two classes on which it was trained, unaware 
that it is being asked to identify an object it was not trained to 
recognize. In a best-case scenario, it would give outputs of 50 
percent for each class, indicating that the input is equally likely to 
be either a cat or a dog. In a worst-case scenario, it would give a 
high probability score for one class, providing a false sense of 
certainty. But the way most machine learning systems are 
designed, they cannot give a low score to both the “cat” and “dog” 
labels. As such, these outputs should not be read as the machine 
learning system’s “confidence” in the correctness of its 
classification. 

Predictive uncertainty estimates can fill this gray spot. They 
complement the regular model outputs by expressing the model’s 
uncertainty about the correctness of its predictions. If a machine 
learning system has good predictive uncertainty estimates, then 
the probability scores in Figure 3 would be accompanied by a high 
uncertainty score, indicating that the model is highly uncertain 
about the correctness of the predictions. Such uncertainty 
estimates can help a human operator avoid wrong predictions in 
safety-critical settings and ensure the system’s reliability and 
safety, as demonstrated in Figure 4. 
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Figure 4. An example of predictive uncertainty estimates for autonomous 
vehicles. The first column shows the image fed into the system, the second 
column shows the ground truth classification of objects in the image (buildings, 
sky, street, sidewalk, etc.), the third column shows the model’s classification, and 
the rightmost column shows the system’s uncertainty about its classification. As 
can be seen from the image on the bottom right, the system is uncertain about 
its classification of parts of the sidewalk and could alert the human operator to 
take over the steering wheel. 

 
Source: Alex Kendall and Yarin Gal, “What Uncertainties Do We Need in 
Bayesian Deep Learning for Computer Vision?” Advances in Neural Information 
Processing Systems 30: Annual Conference on Neural Information Processing 
Systems 2017, Vol. 30, Long Beach, CA, USA, December 4-9, 2017, pp. 5574-
5584, https://arxiv.org/abs/1703.04977. 

 

Unfortunately, obtaining reliable predictive uncertainty estimates 
for modern machine learning systems remains an unsolved 
problem. While several existing methods can generate uncertainty 
estimates, there are no mathematical guarantees that these 
uncertainty estimates are actually accurate. Furthermore, while 
empirical studies demonstrate that certain methods produce good 
predictive uncertainty estimates in some settings, those results 
cannot be generalized to any setting. Like other areas of 
robustness research, developing methods that yield reliably well-
calibrated uncertainty estimates for modern machine learning 
systems is an active and ongoing area of research. 

https://arxiv.org/abs/1703.04977


Center for Security and Emerging Technology | 8 

Outlook 

While modern machine learning systems often perform well on 
narrowly defined tasks, they can fail when presented with tasks 
meaningfully different from those seen during training. Adversarial 
attacks exploit this vulnerability by presenting inputs to machine 
learning systems specifically designed to elicit poor predictions. 
Adversarially robust machine learning systems seek to fix this 
vulnerability through mechanisms allowing the system to recognize 
when an input is meaningfully different from data seen during 
training, making the system more reliable in practice. 
Unfortunately, while an active area of research, existing 
approaches to detecting and defending against adversarial attacks 
do not yet provide satisfactory solutions, and the timeline to 
develop and deploy truly robust modern machine learning systems 
remains uncertain. For now, anyone considering deploying modern 
machine learning systems in safety-critical settings must therefore 
grapple with the fact that in doing so, they are introducing safety 
risks that we do not yet know how to mitigate effectively.2 
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Endnotes

1 Organizational factors will also play an important role in whether the
 deployment of a given AI system is safe. For more on the importance of robust 
organizational practices, see Thomas G. Dietterich, “Robust Artificial 
Intelligence and Robust Human Organizations,” arXiv [cs.AI] (November 27, 
2018), preprint, https://arxiv.org/abs/1811.10840.

2 Andrew Lohn, “Hacking AI” (Center for Security and Emerging Technology, 
December 2020), https://cset.georgetown.edu/research/hacking-ai/. 

https://cset.georgetown.edu/research/hacking-ai/
https://arxiv.org/abs/1811.10840



