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This paper is the fifth installment in a series on “AI safety,” an area of machine learning 
research that aims to identify causes of unintended behavior in machine learning 
systems and develop tools to ensure these systems work safely and reliably. Other 
papers in the series describe three categories of AI safety issues—problems of 
robustness, assurance, and specification. This paper introduces the idea of uncertainty 
quantification, i.e., training machine learning systems that “know what they don’t 
know.” 

Introduction 

The last decade of progress in machine learning research has given rise to systems 
that are surprisingly capable but also notoriously unreliable. The chatbot ChatGPT, 
developed by OpenAI, provides a good illustration of this tension. Users interacting 
with the system after its release in November 2022 quickly found that while it could 
adeptly find bugs in programming code and author Seinfeld scenes, it could also be 
confounded by simple tasks. For example, one dialogue showed the bot claiming that 
the fastest marine mammal was the peregrine falcon, then changing its mind to the 
sailfish, then back to the falcon—despite the obvious fact that neither of these choices 
is a mammal. This kind of uneven performance is characteristic of deep learning 
systems—the type of AI systems that have seen most progress in recent years—and 
presents a significant challenge to their deployment in real-world contexts. 

An intuitive way to handle this problem is to build machine learning systems that 
“know what they don’t know”—that is, systems that can recognize and account for 
situations where they are more likely to make mistakes. For instance, a chatbot could 
display a confidence score next to its answers, or an autonomous vehicle could sound 
an alarm when it finds itself in a scenario it cannot handle. That way, the system could 
be useful in situations where it performs well, and harmless in situations where it does 
not. This could be especially useful for AI systems that are used in a wide range of 
settings, such as large language models (the technology that powers chatbots like 
ChatGPT), since these systems are very likely to encounter scenarios that diverge from 
what they were trained and tested for.  

Unfortunately, designing machine learning systems that can recognize their limits is 
more challenging than it may appear at first glance. In fact, enabling machine learning 
systems to “know what they don’t know”—known in technical circles as “uncertainty 
quantification”—is an open and widely studied research problem within machine 
learning. This paper gives an introduction to how uncertainty quantification works, why 
it is difficult, and what the prospects are for the future. 
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The Challenge of Reliably Quantifying Uncertainty 

In principle, the kind of system we would like to build sounds simple: a machine 
learning model that generally makes correct predictions, but that can indicate when its 
predictions are more likely to be incorrect. Ideally, such a model would indicate high 
levels of uncertainty neither too often nor too seldom. A system that constantly 
expresses under-confidence in situations that it could actually handle well is not very 
useful, but if the system sometimes does not indicate uncertainty when in fact it is 
about to fail, then this defeats the purpose of trying to quantify uncertainty in the first 
place. Experts use the idea of “calibration” to describe the desired behavior here: the 
level of uncertainty that a machine learning model assigns to a given prediction—its 
“predictive uncertainty”—should be calibrated to the probability that the prediction is 
in fact incorrect. 

Figure 1: Calibration Curves Depicting Under-Confidence, Near-Perfect Calibration, 
and Over-Confidence 

 

The figures show under-confident (left), well-calibrated (center), and over-confident (right) calibration 
curves. Ideally, the confidence expressed by the model (on the x-axis) should correspond to the chance 
that the prediction is correct (on the y-axis). A model is under-confident if its predictions are more often 
correct than its confidence levels would imply (per the chart on the left), while the inverse is true for an 
over-confident model (on the right). 

Source: CSET. 

For example, imagine a medical machine learning classification system that uses a scan 
of a patient’s eye to predict whether the patient has a retinal disease.1 If the system is 
calibrated, then its predictions—typically expressed as percentages—should 
correspond to the true proportion of diseased retinas. That is, it should be the case that 
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of the retina images predicted to be exhibiting signs of disease with a 50% chance, half 
are in fact diseased, or that eight out of ten retina images predicted to have an 80% 
probability of exhibiting signs of disease in fact do, and so on. The closer the assigned 
probabilities are to the real proportion in the evaluation data, the better calibrated the 
system is. A well-calibrated system is useful because it allows users to account for 
how likely the prediction is to be correct. For example, a doctor would likely make 
different decisions about further testing and treatment for a patient whose scan 
indicated a 0.1% chance of disease versus one whose scan indicated a 30% chance—
even though neither scan would be classified as likely diseased. 

Understanding Distribution Shift 

Building a system that can express well-calibrated predictive uncertainty in the 
laboratory—while not straightforward—is achievable. The challenge lies in creating 
machine learning models that can reliably quantify uncertainty when subjected to the 
messiness of the real world in which they are deployed. 

At the root of this challenge lies an idea called “distribution shift.” This refers to the 
ways in which the types of data that a machine learning system encounters (the “data 
distribution”) change from one setting to another. For instance, a self-driving car 
trained using data from San Francisco’s roads is unlikely to encounter snow, so if the 
same car were deployed in Boston during the winter, it would encounter a different 
data distribution (one that includes snow on the roads), making it more likely to fail. 

Distribution shift is easy to describe informally, but very difficult to detect, measure, or 
define precisely. This is because it is especially difficult to foresee and account for all 
the possible types of distribution shifts that a system might encounter in practice. 
When a particular shift can be anticipated—for instance, if the engineers that trained 
the self-driving car in San Francisco were planning a Boston deployment and 
considering weather differences—then it is relatively straightforward to manage. In 
most cases, however, it is impossible to know in advance what kinds of unexpected 
situations—what unknown unknowns—a system deployed in the messy real world 
may encounter.  

The need to deal with distribution shifts makes quantifying uncertainty difficult, 
similarly to the broader problem of generalization in modern machine learning 
systems. While it is possible to evaluate a model’s accuracy on a limited set of data 
points in the lab, there are no mathematical guarantees that ensure that a model will 
perform as well when deployed (i.e., that what the system learned will “generalize” 
beyond its training data). Likewise, for uncertainty quantification, there is no guarantee 
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that a seemingly well-calibrated model will remain calibrated on data points that are 
meaningfully different from the training data. But while there is a vast amount of 
empirical and theoretical literature on how well models generalize to unseen 
examples, there is relatively little work on models’ ability to reliably identify situations 
where their uncertainty should be high, making “uncertainty generalization” one of the 
most important and yet relatively underexplored areas of machine learning research. 

Accurately Characterizing Uncertainty 

In the medical imaging example above, we described how machine learning models 
used for classification produce probabilities for each class (e.g., diseased versus not 
diseased), but such probabilities may not be sufficient for reliable uncertainty 
quantification. These probability scores indicate how strongly a model predicts that a 
given input corresponds to a given output. For instance, an image classifier for reading 
zip codes takes in an image of a handwritten digit, then assigns a score to each of the 
ten possible outputs (corresponding to the digit in the image being a “0,” “1,” “2,” etc.). 
The output with the highest score indicates the digit that the classifier thinks is most 
likely to be in the image.  

Unfortunately, these scores are generally not useful indicators of the model’s 
uncertainty, for two reasons. First, they are the result of a training process that was 
optimizing for the model to produce accurate outputs, not calibrated probabilities;2 
thus, there is no particular reason to believe that a score of 99.9% reliably corresponds 
to a higher chance that the output is correct than a score of 95%. Second, systems 
designed this way have no way to express “none of the above”—say, if the zip code 
reader encountered a bug splattered across the page. The model is mathematically 
forced to assign probability scores to the available outputs, and to ensure that those 
scores sum to one.3 

This naturally raises the question of why adding a “none of the above” option is not 
possible. The reason is simple: models learn from data and, due to the challenges of 
distribution shift described above, AI developers typically do not have data that 
represents the broad range of possibilities that could fit into a “none of the above” 
option. This makes it infeasible to train a model that can consistently recognize inputs 
as being meaningfully different. 

To summarize, the core problem making uncertainty quantification difficult is that in 
many real-world settings, we cannot cleanly articulate and prepare for every type of 
situation a model may need to be able to handle. The aim is to find a way for the 
system to identify situations when it is likely to fail—but because it is impossible to 
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expose the system to every kind of scenario in which it might perform poorly, it is 
impossible to verify in advance that the system will appropriately estimate its chances 
of performing well under novel, untested conditions. In the next section, we discuss 
several approaches that try to navigate this difficulty. 

Existing Approaches to Uncertainty Quantification 

The key challenge of uncertainty quantification is to develop models that can 
accurately and reliably express how likely their predictions are to be correct. A wide 
range of approaches have been developed that aim to achieve this goal. Some 
approaches primarily treat uncertainty quantification as an engineering challenge that 
can be addressed with tailored algorithms and more training data. Others seek to use 
more mathematically grounded techniques that could, in theory, provide watertight 
guarantees that a model can quantify its own uncertainty well. Unfortunately, it is not 
currently possible to produce such mathematical guarantees without using unrealistic 
assumptions. Instead, the best we can do is develop models that quantify uncertainty 
well on carefully designed empirical tests.  

Approaches to uncertainty quantification in modern machine learning fall into four 
different categories:  

1. Deterministic Methods 
2. Model Ensembling 
3. Conformal Prediction  
4. Bayesian Inference 

Each of these approaches has distinct benefits and drawbacks, with some providing 
mathematical guarantees and others performing particularly well on empirical tests. 
We elaborate on each technique in the remainder of this section. Readers are welcome 
to skip to the next section if the somewhat more technical material below is not of 
interest. 

Deterministic Methods 

Deterministic methods work by explicitly encouraging the model to exhibit high 
uncertainty on certain input examples during training. For example, researchers might 
start by training a model on one dataset, then introduce a different dataset with the 
expectation that the model should express high uncertainty on examples from the 
dataset it was not trained on. Using this approach results in models that are very 
accurate on data similar to what they were trained on, and that indicate high 
uncertainty for other data.4  
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However, it is not clear how much we can rely on these research results in practice. 
Models trained this way are optimized to recognize that some types of input are 
outside the scope of what they can handle. But because the real world is complex and 
unpredictable, it is impossible for this training to cover all possible ways in which an 
input could be out of scope. For example, even if we trained the medical imaging 
classifier described above to have high predictive uncertainty on images that exhibit 
commonly known image corruptions, it may still fail at deployment if the model was 
trained on images obtained in one hospital with a certain type of equipment, and 
deployed in another hospital with a different type of equipment. As a result, this 
approach is prone to failure when the model is deployed, and there is no known way to 
guarantee that the predictive uncertainty estimates will in fact be reliable. 

Model Ensembling 

Model ensembling is a simple method that combines multiple trained models and 
averages their predictions. This approach often improves predictive accuracy compared 
to just using a single model. An ensemble’s predictive uncertainty is expressed as the 
standard deviation of the different predictions, meaning that if all of the models in the 
ensemble make similar predictions, then uncertainty is low; if they make very different 
predictions, uncertainty is high. Ensemble methods are often successful at providing 
good predictive uncertainty estimates in practice, and are therefore a popular 
approach—though they can be expensive, given that multiple models must be trained. 
The underlying mechanism of using ensembling for uncertainty quantification is that 
different models in an ensemble will be likely to agree on input examples similar to the 
training data, but may disagree on input examples meaningfully different from the 
training data. As such, when the predictions of the ensemble components differ, this 
can be used as a stand-in for uncertainty.5  

However, there is no way to verify that this mechanism works for any given ensemble 
and input example. In particular, it is possible that for some input examples, multiple 
models in the ensemble may all give the same incorrect answer, which would give a 
false impression of confidence, and it is impossible to ensure that a given ensemble 
will provide reliable, well-calibrated predictive uncertainty estimates across the board. 
For some use cases, the fact that ensembling typically provides fairly good uncertainty 
estimates may be sufficient to make it worth using. But in cases where the user needs 
to be able to trust that the system will reliably identify situations where it is likely to 
fail, ensembling should not be considered a reliable method. 
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Conformal Prediction 

Conformal prediction, in contrast with deterministic methods and ensembling, is a 
statistically well-founded approach that provides mathematical reliability guarantees, 
but relies on a key assumption: that the data the model will encounter once deployed 
is generated by the same underlying data-generating process as the training data (i.e., 
that there is no distribution shift). Using this assumption, conformal prediction can 
provide mathematical guarantees of the probability that a given prediction range 
included the correct prediction. For instance, in a weather forecasting setting, 
conformal prediction could guarantee a 95% chance that the day’s maximum 
temperature will fall within a certain range. (That is, it could provide a mathematical 
guarantee that 95 out of 100 similar predictions would fall within the range.)6 A 
predicted range of, say, 82ºF-88ºF would imply more uncertainty than a range of 83ºF-
85ºF.  

Conformal prediction’s major advantage is that it is possible to mathematically 
guarantee that its predictive uncertainty estimates are correct under certain 
assumptions. Its major disadvantage is that those assumptions—primarily that the 
model will encounter similar data while deployed to the data it was trained on—often 
do not hold. Worse, it is often impossible to detect when these assumptions are 
violated, meaning that the same kind of changes in inputs that may trip up 
deterministic methods are also likely to cause conformal prediction to fail. In fact, in all 
of the example application problems where machine learning models are prone to fail 
and for which we would like to find approaches to improving uncertainty quantification, 
standard assumptions of conformal prediction would be violated. 

Bayesian Inference 

Lastly, Bayesian uncertainty quantification uses Bayesian inference, which provides a 
mathematically principled framework for updating the probability of a hypothesis as 
more evidence or information becomes available.7 Bayesian inference can be used to 
train a neural network that represents each parameter in the network as a random 
variable, rather than a single fixed value (as is typically the case). While this approach 
is guaranteed to provide an accurate representation of a model’s predictive uncertainty, 
it is computationally infeasible to carry out exact Bayesian inference on modern 
machine learning models such as neural networks. Instead, the best researchers can do 
is to use approximations, meaning that any guarantee that the model’s uncertainty will 
be accurately represented is lost. 
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Practical Considerations in Using Uncertainty Quantification 

Uncertainty quantification methods for machine learning are a powerful tool for making 
modern machine learning systems more reliable. While no existing approach is a silver 
bullet and each approach has distinct practical shortcomings, research has shown that 
methods specifically designed to improve the ability of modern machine learning 
systems to quantify their uncertainty—such as the approaches described above—
succeed at doing so in most settings. These methods therefore often serve as “add-
ons” to standard training routines. They can be custom-designed to meet the specific 
challenges of a given prediction task or deployment setting and can add an additional 
safety layer to deployed systems. 

Considering human-computer interaction is crucial for making effective use of 
uncertainty quantification methods. For example, being able to interpret a model’s 
uncertainty estimates, determining the level of uncertainty in machine learning 
systems that human operators are comfortable with, and understanding when and 
why a system’s uncertainty estimates may be unreliable is extremely important for 
safety-critical application settings. Choices around the design of user interfaces, data 
visualizations, and user training can make a big difference in how useful uncertainty 
estimates are in practice.8 

Given the limitations of existing approaches to uncertainty quantification, it is essential 
that the use of uncertainty estimates does not create a false sense of confidence. 
Systems must be designed to account for the fact that a model displaying high 
confidence could still be wrong if it has encountered an unknown unknown that goes 
beyond what it was trained and tested for. 
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Outlook 

There is increasing interest in how uncertainty quantification could be used to mitigate 
the weaknesses of large language models, such as their tendency to hallucinate. While 
much past work in the space has focused on image classification or simple tabular 
datasets, some researchers are beginning to explore what it would look like for 
chatbots or other language-based systems to “know what they don’t know.”9 This 
research needs to grapple with challenges specific to language generation, such as the 
fact that there is often no single correct answer. (For instance, correct answers to the 
question: “What is the capital of France?” could include, “Paris,” “It’s Paris,” or “The 
capital of France is Paris,” each of which requires the language model to make different 
predictions about which word should come next.) 

Due to the fundamental challenges of reliably quantifying uncertainty, we should not 
expect a perfect solution to be developed for language generation or any other type of 
machine learning. Just as with the broader challenge of building machine learning 
systems that can generalize to new contexts, the possibility of distribution shift means 
that we may never be able to build AI systems that “know what they don’t know” with 
complete certainty.  

Nonetheless, research into reliable uncertainty quantification in challenging domains—
such as computer vision or reinforcement learning—has made great strides in 
improving the reliability and robustness of modern machine learning systems over the 
past few years and will play a crucial role in improving the safety, reliability, and 
interpretability of large language models in the near future. Over time, uncertainty 
quantification in machine learning systems is likely to move from being an area of basic 
research to a practical engineering challenge that can be approached with the different 
paradigms and methods described in this paper.  
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