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Introduction 

Geopolitical tensions between the United States and China have sparked an ongoing 
dialogue in Washington about the phenomenon of “decoupling,” the use of public 
policy tools to separate the multifaceted economic ties that connect the two powers. 
This process has already begun, with a range of steps taken in recent years on both 
sides of the Pacific to reshape the bilateral economic relationship. 

Decoupling encompasses a wide range of tactics and policy objectives.1 Some have 
advocated for decoupling as a means of protecting the economic health of certain U.S. 
industries. Others have argued for decoupling as a tool to reduce the dependence of 
the United States on China for strategically important products and supplies. Still 
others see decoupling as a means of limiting the channels through which China might 
compromise U.S. national security, as in the ongoing debates around 5G and network 
infrastructure. 

This issue brief studies the efficacy of one specific aspect of this broader decoupling 
phenomenon. Specifically, it examines the use of export controls and related trade 
policies to prevent a rival from acquiring the equipment and know-how to catch up to 
the United States in cutting-edge, strategically important technologies. This objective 
has already motivated some of the most widely discussed events of the “decoupling 
era” in U.S.-China relations. The Committee on Foreign Investment in the United 
States, for example, has been active in blocking Chinese firms from accessing specific 
types of leading-edge semiconductor designs.2 

To study the efficacy of these tactics, this issue brief examines past efforts by the 
United States to decouple supply chains in satellite technology. For decades, an array 
of export controls and other regulations have worked to prevent rivals from accessing 
key technologies for satellites designed and manufactured in the United States. The 
satellite domain affords the opportunity to examine the effectiveness of decoupling 
policies in the context of a suite of emerging technologies considered strategically 
important. These lessons have contemporary relevance as U.S. policymakers consider 
establishing similar regimes in the current generation of strategic emerging 
technologies like artificial intelligence (AI). 

This paper addresses two critical questions. First, to what extent does history support 
the hypothesis that decoupling is an effective tool in blocking access and slowing the 
progress of a rival in an emerging technology? Second, to the extent that it can be a 
tool in achieving this aim, what factors make decoupling policies more or less 
successful? 
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This analysis uncovers a number of valuable insights. For one, it is clear that 
decoupling is a viable strategy: export controls can indeed play a powerful role in 
reshaping supply chains and limiting rival access to emerging technology. At the same 
time, the satellite example tempers our expectations about what decoupling can 
achieve. It is clear that decoupling regimes are imperfect and frequently act as a 
hindrance, rather than an absolute bar, to a rival’s technological progress. Moreover, 
the transition of a hard-to-access, cutting-edge technology to a widespread, 
commodified one over time means that the effectiveness of decoupling tactics declines 
dramatically over time. The satellite domain suggests that strategically important 
technologies can and will be acquired by a motivated rival, and decoupling can help to 
determine when that might happen. 

The experience of decoupling in supply chains around satellites also suggests that the 
success of decoupling turns in large part on specific characteristics of the technology in 
question. Specifically, technologies that feature geographically concentrated supply 
chains appear more amenable to decoupling tactics. This feature facilitated the 
temporary success of decoupling policies in the satellite domain. To the extent that 
supply chains are diffuse, with many interchangeable providers spread widely across 
multiple countries, decoupling may be a relatively weak means to limit rival progress in 
a given technology. 

Decoupling is a narrow tool of national competition in emerging technologies. It has 
limited impact, in the sense that it appears difficult to use decoupling to permanently 
bar a rival from catching up in a given technology. It also has limited scope in that the 
specific supply chain geographies of certain technologies lend themselves to more 
effective decoupling regimes than others. But, to the extent that imposing even a 
temporary delay in the progress of a rival is valuable, and where the technology in 
question is amenable to effective decoupling, the tactic offers an attractive option. 

This paper is organized in two parts. First, we examine the case study of satellite 
technology, evaluating the effectiveness of decoupling as a strategy in that domain 
and the factors that shaped success and failure. Second, we apply those lessons to the 
contemporary case of artificial intelligence, finding that while aspects of AI competition 
do support the need to find ways of imposing even temporary delay in rival progress, 
the tactic of decoupling is fundamentally limited in achieving this end. 

 



Center for Security and Emerging Technology | 3 

Part I: Decoupling in Space 

The U.S.-China relationship in space technology, specifically satellites and their 
respective components, provide an excellent historical case study from which to 
examine the effectiveness of “decoupling” as a tactic for preserving a nation’s 
advantage in a strategic technology for two reasons. 

First, satellites represent a technological domain that has been definitively 
“decoupled,” providing an opportunity to examine the impact of such policies. 
Beginning from a period of scientific and economic cooperation around space 
technology in the 1990s, the present state of play is characterized by one researcher 
as featuring “almost no direct links between the United States and China with regard 
to space technology research, development, and operations thanks to various export 
controls and limits on bilateral engagement with China counterparts.”3 

Second, decoupling can serve a variety of different ends in national competition. 
Satellite technologies are particularly useful for this analysis since the specific intent of 
pursuing a decoupling strategy—focused around nonproliferation objectives—
eventually had broader implications for the competitiveness of the United States and 
U.S. firms in space technologies. In this sense, the means (decoupling), the desired 
ends (preventing China from developing advanced conventional weapons), and the 
eventual long-term, albeit unintended effects provide important lessons for 
contemporary discussions around decoupling tactics. 

This section reviews the historical arc of the embargo on satellite technology, 
extracting a series of lessons in whether and how decoupling regimes can be effective. 
This provides a useful framework for analyzing whether decoupling regimes might 
play a similar role in AI. 

A Brief History of U.S.-China Relations in Space Technology 

China harbors long-standing ambitions to establish a comprehensive space program.4 
In the early years of China’s space program, the majority of its advancements in the 
area came via expertise from the Soviet Union. However, as the Sino-Soviet 
relationship began to sour in the late 1950s, the Chinese found themselves forced to 
rely on their indigenous abilities for the next two decades. 

During this period, China made significant strides in its intercontinental ballistic missile 
(ICBM) program, due in part to the expertise of U.S.-trained scientist Qian Xuesen after 
he was driven out of the United States over fears of espionage.5 As the result of these 
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efforts, China launched its first satellite in April 1970.6 Successor systems known as 
Long March 2A and 2C were first successfully deployed in 1975 and 1982, 
respectively. These rockets became the standard platform used by Chinese military 
and space programs through the end of the twentieth century.7 However, outside of its 
progress on ICBMs, China’s space activities were relatively limited during the 1960s 
and 1970s, primarily due to small government budgets and the loss of a generation of 
science and technology talent during the Cultural Revolution.8 

In the early 1970s, U.S. policymakers moved towards a reconciliation with China out of 
a desire to counter Soviet influence in the Cold War. After the establishment of 
diplomatic relations in 1979, initial space cooperation began when Chinese Premier 
Deng Xiaoping visited NASA’s Johnson Space Center in January of that year.9 In the 
late 1980s, the two sides signed three separate agreements that would allow for the 
launch of three U.S.-built satellites on Chinese rockets. These agreements allowed for 
the export of the then-advanced U.S.-built AUSSAT and Asiasat-1 satellites to 
China.10 

Despite tensions between the United States and China resulting from the Tiananmen 
Square massacre in 1989, both the George H. W. Bush and Bill Clinton administrations 
continued to push U.S.-China space cooperation forward. Between 1989 and 1998, 
Presidents Bush and Clinton issued 13 Presidential waivers for 20 satellite projects 
based on “national interest,” allowing U.S.-origin satellites or components that were 
otherwise subject to export controls to be exported to China.11 In 1993, the Clinton 
administration announced that it would review commercial satellite export control 
regulation to speed up and complete a shift from the State Department’s more 
restricted Munitions List to the Department of Commerce’s Commerce Control List. 
According to Sciences Po’s Hugo Meijer, this “desire to shift authority to the Commerce 
Department . . . reflected the evolution of satellites from a military to a civilian 
technology.”12 

Turning Point: The Loral and Hughes Cases 

Incidents involving two U.S. companies in 1998—Hughes Electronics Corporation and 
Loral Space & Communications—represented a turning point in U.S.-China space 
cooperation, pushing the two countries toward decoupling and setting the stage for 
the current bifurcation in bilateral space relations. 

In April 1998, it was first reported that the U.S. Department of Justice had initiated a 
criminal investigation into Hughes and Loral for possible violations of export control 
laws.13 This came in the aftermath of several launch failures of U.S.-built satellites on 



Center for Security and Emerging Technology | 5 

Chinese rockets that resulted in insurance investigations. These investigations revealed 
that Hughes and Loral were found to have shared sensitive technical information on 
guidance systems with Chinese engineers—information that was deemed to have 
likely been used to improve the accuracy and reliability of Chinese missiles, according 
to scholar Shirley Kan.14 

U.S. policymakers criticized the Clinton administration for allegedly putting economic 
interests ahead of national security in its attempts to liberalize the export control 
regime. In response, the House Select Committee on U.S. National Security and 
Military/Commercial Concerns with the People’s Republic of China was established in 
June 1998, and their resulting investigation, known as the Cox Report, highlighted the 
degree to which Loral and Hughes had helped advance Chinese military capabilities in 
space technology.15 

Ultimately, the core national security concern raised by these findings was that this 
assistance accelerated the pace of technological advancement in the space domain by 
China. As the committee concluded, the support of Hughes and Loral “led to 
improvements in the PRC’s rockets and that the improvements would not have been 
considered or implemented so soon without the U.S. assistance.”16 In response to these 
findings, the committee recommended that the executive branch “aggressively 
implement satellite export control provisions from the . . . National Defense 
Authorization,” and that the “State Department should have sole satellite licensing 
authority.”17 

These conclusions were controversial, with multiple experts critiquing the findings of 
fact and policy recommendations made by the committee.18 Despite these criticisms, 
the 1999 National Defense Authorization Act (NDAA) directed that “all satellites and 
related items that are on the Commerce Control List of dual-use items . . . shall be 
transferred to the United States Munitions List,”19 thereby defining in legal terms 
commercial satellites and related components as defense articles under the 
Department of State’s Munitions List. 

These policies “ended U.S.-China space cooperation.”20 Since the passage of the 1999 
NDAA, China and the United States have maintained little to no interaction in space 
exports, research, or collaboration. Subsequent policies since 2000 have furthered 
U.S.-China decoupling in space. Notably, a 2011 amendment to the Commerce-
Justice-Science Funding Bill, often referred to as the Wolf Amendment, sought to limit 
U.S. government agencies, including NASA, from working with Chinese commercial or 
government counterparts.21 
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Lessons from Decoupling in Satellite Technology 

The legacy of U.S.-China relations in space technologies offer a valuable case study of 
an “already decoupled” domain that provides lessons to policymakers and researchers 
assessing the potential impact of implementing similar policies in a range of 
strategically important emerging technologies. 

Two key lessons emerge. First, decoupling should be seen as a means of imposing a 
delay, rather than categorically halting the ability for a rival to reach parity in a 
particular technological domain. In the context of satellite technologies, stringent 
export control regimes do appear to have imposed hurdles in Chinese progress. 
However, in recent years, China has caught up and even exceeded U.S. capabilities in 
some respects in spite of these restrictions on technology transfer. 

Second, decoupling is not a catch-all tool: the specific characteristics of a technology 
can make it more or less amenable to control by these tactics. In the satellite domain, 
the success of the decoupling regime in temporarily slowing Chinese progress around 
space technologies was due in part to specific aspects of the supply chain. Satellite 
technology historically featured a high level of geographic concentration, with a small 
number of U.S. companies controlling much of the global market share. This allowed 
export control regimes to more efficiently limit Chinese access to key components. 

Lesson 1: Decoupling as a Delaying Stratagem 

Decoupling from China in space via tools like export controls has limited technology 
transfer and appears to have inhibited satellite launch activity in China during the years 
immediately following the 1999 NDAA.22 However, Chinese capabilities in space 
technologies have advanced over time even in spite of these restrictions. 

There are a few reasons for this. For one, key components and expertise have become 
available elsewhere outside the United States. Meijer argues that the U.S.’s decision to 
unilaterally apply International Traffic in Arms Regulations (ITAR) export controls has 
been counterproductive, as it attempted to control technologies that were not as 
tightly regulated by other foreign governments and widely available from other 
sources.23 Secondly, espionage remains one means of acquiring key technologies and 
evading export controls.24 Even as recently as 2021, a senior NASA scientist pleaded 
guilty to charges that he had failed to disclose participation in China’s Thousand 
Talents Program, a government-sponsored recruitment program aimed at recruiting 
overseas individuals with access to strategic technology or intellectual property.25 
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Moreover, the decoupling regime may have played a role in simultaneously inhibiting 
U.S. technological progress and competitiveness, making it easier for Chinese 
capabilities to catch up.26 ITAR satellite export controls have harmed the U.S. space 
industrial base and favored international competitors, resulting in the decline of U.S. 
satellite market shares and revenues.27 In 2014, the Department of Commerce’s 
Bureau of Industry and Security estimated that between $988 million and $2 billion of 
foreign sales had been lost to U.S. industry between 2009 and 2012 due to export 
controls.28 

Some experts have also argued that the talent decoupling that has arisen from the 
Wolf Amendment has further disadvantaged the United States by driving a deeper 
wedge between the United States and its allies, as well as by disrupting potential 
collaborations that could lead to innovation. In 2018, China’s Ambassador to the 
United Nations, Shi Zhongjun, announced a memorandum of understanding with the 
UN Office for Outer Space Affairs to invite applications from other UN member states 
to conduct experiments on-board China’s Space Station (CSS).29 Due to Wolf 
Amendment restrictions, U.S. researchers are unable to participate in this collaboration, 
keeping them out of the loop on collaborative research and development efforts that 
may be happening aboard the CSS. 

Ultimately, a 2020 report from the U.S.-China Economic and Security Review 
Commission argues that China has now emerged as a leading player in space despite 
U.S. efforts, due in part to a domestic push to indigenize space R&D capabilities 
without the assistance of U.S.-origin technologies. The report went on to conclude that 
the progress China has made in space technologies now has the potential to deny the 
United States and allies access to similar systems, and that China is now in a position 
to achieve disruptive breakthroughs in various space technologies, including satellites 
and counterspace capabilities.30 

This assessment has been reaffirmed by those in the U.S. Department of Defense. 
Former Commander of U.S. Strategic Command, General Kevin Chilton, stated in 2009 
that he was “highly concerned that our own civil and commercial space enterprise, 
which is essential to the military space industrial base, may be unnecessarily 
constrained by export control legislation and regulation.”31 The 2019 Industrial 
Capabilities Report to Congress by the Department of Defense’s Office of Industrial 
Policy notes that DOD’s reliance on the commercial space sector imposes sources of 
vulnerability, as it creates a “need to sustain fragile domestic sources.”32 

The case study of space technologies highlights that decoupling is at best a tool of 
delay. Chinese progress has not been halted by the restrictive decoupling regime in 



Center for Security and Emerging Technology | 8 

satellite technologies implemented in the wake of the Loral and Hughes cases. 
Instead, progress has been merely delayed, as the emergence of alternative sources 
for talent and technology, espionage, and ebbing U.S. competitiveness have chipped 
away at the effectiveness of the decoupling regime in blocking Chinese advancement. 

Lesson 2: Geographic Concentration Influences Decoupling Effectiveness 

The space technology case tempers optimism about the use of decoupling as a tool for 
preventing a rival from accessing emerging, strategically important technologies. It is 
also a useful case study since it suggests that the effectiveness of a decoupling regime 
can depend greatly on the specific characteristics of the technology in question. One 
major factor that stands out in the satellite technology example is the important role 
that a geographically concentrated supply chain plays in decoupling effectiveness. 

Technologies that have a small number of manufacturers concentrated in a handful of 
countries lend themselves more naturally to effective export control regimes, since 
there are fewer alternative routes through which a rival might gain access to key 
technologies. Unilateral U.S. export controls initially slowed Chinese progress in 
satellite technology during an era in which U.S. firms simultaneously controlled much 
of the global market share. However, as “ITAR-free” alternatives to U.S. providers 
became viable during the 2000s, so too did these controls see reduced effectiveness.33    

Satellites which contained no components covered by the U.S. exports control regime 
(so-called “ITAR-free” satellites) emerged in the early 2000s. These satellites could be 
acquired and traded more easily than those with components subject to ITAR and 
offered customers faster delivery of products. In particular, European institutions like 
Thales Alenia Space, with support from the European Space Agency, hoped these 
products would reduce their dependence on U.S. components and provide access to 
the growing Chinese market. These products grew in popularity and quality. By 2008, 
one analysis concluded that European providers had achieved “relative parity in 
commercial system capabilities” based on a comparison of key features such as 
satellite size, transponder count, and power output.34 

The rise of an alternative source of satellite technology reduced the ability for the U.S. 
to limit rival access. A 2007 report prepared by the European Commission emphasized 
that ITAR-free products and services have allowed European manufacturers to gain 
significant market shares, while the U.S. business suffered from a substantial 
disadvantage.35 Thales Alenia Space, for instance, saw its market share jump from 
around 10 percent prior to the implementation of U.S. export controls, to around 20 
percent by 2004.36 This growth has been driven, in part, by Chinese acquisition of 



Center for Security and Emerging Technology | 9 

these satellites.37 Since the Cox Report and the 1999 NDAA, as a result of ITAR export 
controls, the U.S. share of the global commercial satellite market has declined 
significantly from 73 percent in 1995 to 25 percent in 2005.38 It has since risen to 44 
percent in 2018, although it has yet to reach its pre-Cox Report levels.39 

Geographic concentration also reduces the coordination costs of forging effective 
decoupling regimes internationally. Technology transfer regimes are only as strong as 
their weakest link; failure to coordinate strategic economic policies offers opportunities 
for adversaries to exploit and renders the regimes impotent. During the Cold War, 
stringent U.S. regulations on technologies surrounding submarines were ultimately 
undermined by technology transfer between the Soviet Union and restive U.S. allies 
with access to cutting-edge milling and computer equipment.40 For decades, 
policymakers, defense analysts, academics, and industry executives have affirmed the 
vital need for international cooperation in restricting access to emerging technologies.41 
This posed a major problem for export controls during the Cold War, and applies to 
modern attempts to use decoupling tactics, as well.42 
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Part II: Lessons for Artificial Intelligence 

AI has emerged as a focal point of national competition in advanced technology 
between the United States and China.43 This has included major initiatives to 
accelerate the pace of research, recruit lead talent, and set global standards around 
the technology.44 

While the set of high priority, strategically critical technologies is continually evolving, 
many of the core policy tools for influencing them remain the same. It is perhaps no 
surprise then that the tactics of decoupling have been proposed as a means for 
slowing Chinese progress in the technology.45 This includes a range of investment 
restrictions, export controls, and tariffs.46 As with debates around satellite 
technologies in decades past, the severing of supply chains through export control 
appears to provide an attractive option for preserving the U.S. advantage. 

Does decoupling provide a strong policy option for the United States to preserve its 
technological advantages in AI? The lessons drawn from the example of satellite 
technology provide a useful framework for analysis, requiring us to examine two 
underlying questions. First, given that decoupling is likely to be a temporary strategy of 
delay, would imposing such a delay be valuable to U.S. interests? Second, if imposing 
such a delay is indeed attractive, does AI as a technology possess the attributes that 
make it effectively “decouplable”? 

Our analysis concludes that while imposing delays on China's progress on AI may be 
attractive in the abstract, the specific characteristics of machine learning (ML)—the 
subfield of AI responsible for most of the recent advances in the technology—make 
decoupling a highly ineffectual tactic for achieving this end. We address each of these 
questions in turn. 

Strategic Delay in Artificial Intelligence 

Before reaching the question of whether or not decoupling is feasible, it is critical to 
confront the question of whether or not delaying rival progress in a strategic 
technology is desirable. The answer to this inquiry is not always “yes.” There are many 
ways that delaying tactics can backfire against the aggressor: as illustrated in the 
satellite context, decoupling can alienate allies, inhibit domestic industry, and prompt 
the creation of industry alternatives that isolate a technology leader over time. 
Moreover, efforts at delay pose their own opportunity costs. Expending money and 
effort on “running faster” may ultimately be a more productive approach to competition 
in strategic technologies than attempting to slow a rival down. 
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To that end, it is necessary to examine whether or not the strategic dimensions of 
competition in AI suggest that imposing delay in technological progress is of unique 
importance. There are three key reasons to believe that it is. 

First, as an emerging technology, ML features significant implicit knowledge that is 
acquired by engineers and researchers through their work with veteran participants in 
the field. These core clusters of researchers are likely to create “knowledge spillovers” 
that lead to a disproportionate level of innovation concentrating in a handful of regions 
and organizations.47 In this initial nascent period, it may be particularly important to 
delay access of a rival nation to a core technology since it limits the ability to foster 
competing research clusters. This may result in compounding advantages over time as 
a rival remains dependent on talent and innovations coming from a competitor country 
even as the technology matures. 

Second, industrial competition over AI awards first-mover firms. This is due to the tight 
relationship that exists between data and high-performance ML systems. Firms that 
are able to launch early and establish market share around a ML service are able to 
continuously acquire data that in turn accelerates the improvement of those systems. 
This can make it challenging for laggard firms, from whom limited market share 
translates into a scarcity of data assets to create competitive products. This dynamic 
has manifested in a range of ML product areas, including search and translation.48 
Insofar as national leadership in a technology is a function of the leadership of firms 
based within a country, this factor may favor imposing delays to allow domestic 
leading firms to establish their first-mover dominance over a technology. 

Finally, while the United States leads in AI in many respects, its integration into key 
areas such as military applications remain confounded by a range of organizational 
issues that slow adoption and deployment.49 This “deployment gap” may mean that 
adversaries that might begin with less sophisticated versions of a strategic technology 
may nonetheless achieve superiority by integrating and deploying it faster than the 
United States. Blocking access to a rival, even temporarily, is critical in this context 
since it provides the necessary time for the United States to deploy first and leverage 
the full advantages of the technology. 

Is Artificial Intelligence Decouplable? 

Insofar as the competitive dynamics around AI make even a temporary delay on rival 
advancement attractive, the second question is whether decoupling is the most 
effective method for achieving that end. As the examination of satellite technology 
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suggests, geographic concentration is a key determinant in whether or not decoupling 
is effective. 

ML does not appear to be an attractive candidate for decoupling when viewed through 
this lens. Developing ML technologies depend critically on access to three inputs: (1) 
data, which provides the raw material for training AI systems, (2) algorithms, which 
facilitate the process of extracting useful patterns from data, and (3) computational 
power, the hardware necessary to perform the training process.50 Presently, lack of 
access to any one of the elements of this “AI triad” can significantly hinder attempts to 
develop and deploy these systems. 

To that end, any decoupling regime seeking to limit rival progress in the technology 
would need to target data, algorithms, computational power, or some combination of 
the three. However, each of these key inputs feature characteristics that raise doubts 
about the ability of decoupling regimes to be effective. Data and algorithms are too 
geographically distributed to be easily amenable to an export control approach. 
Computing power, while geographically concentrated, is for a number of reasons only 
a narrow lever for influencing rival progress in the technology. 

As a whole, this analysis suggests that a decoupling approach would be a largely 
ineffectual route to inhibit rival advancement in AI writ large, even as it suggests some 
options in hindering progress of specific applications of the technology.  

Data: Too Ubiquitous for Decoupling 

Data distinguishes AI from the algorithms of bygone eras. An AI system learns how to 
complete a task based on patterns it discerns from data, rather than relying on 
prewritten “if/then” rules. An explosion in data collection and availability partly 
facilitated the new AI research boom of the 2010s.51 

Data is specific in utility, ubiquitous in collection, disaggregated in storage, and 
typically commercial in application. It is generated by thousands of industrial control 
systems, millions of GPS relays, billions of smartphones and personal computers, and 
apps for everything.52 These features, among others, are what led CSET Fellow Carrick 
Flynn to conclude in 2019 that “[e]xpanded export controls on general purpose AI 
software, untrained algorithms, and most datasets are unnecessary and likely 
counterproductive to U.S. leadership in AI.”53 Put succinctly, data is so foundational to 
21st century life, it cannot be effectively controlled. 
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This fact makes the creation of a decoupling regime categorically limiting the flow of 
data of all kinds across borders a daunting prospect. However, data is not a fungible 
resource. Feeding a neural network millions of X-ray images can help it diagnose lung 
cancer, but will certainly not enable the system to drive a car autonomously.54 

This means that there may be some promise in targeted limitations of certain kinds of 
data critical for strategically important applications of AI, for instance particularly 
sensitive datasets collected and used by militaries. Scientists at China’s leading 
defense companies, for example, frequently lament that they do not have sufficient 
access to datasets required to build and run AI for military applications—like X-band 
radar images of targets taken from missile seekers.55 This kind of data is not 
commercially available and not easily substituted, and access to it is a significant 
barrier in developing AI systems that are robust and reliable enough to be deployed on 
the battlefield. But the United States has already adopted security measures to protect 
this kind of information, and much of it was not being shared with the Chinese military 
at the onset.56 

The bottom line is that the international dissemination of data writ large is not easily 
amenable to control by public policy. Global data supply chains are too large, 
unwieldy, and interconnected—and U.S. firms stand too much to lose—for the United 
States to restrict the sale of or access to broad categories of commercial data. 
Narrower policies focusing on protecting specific datasets, such as niche, militarily-
specific images or citizen genetic information, may be a means of blocking rival 
progress in certain key AI application areas. However, prospects for broad “data 
decoupling” are slim. 

Algorithms: Not Much Better 

Algorithms are what most people think of when they hear “artificial intelligence.” They 
are the reasoning models that allow AI systems to mimic intelligence—lines of code 
that “govern how machine learning systems process information and make 
decisions.”57 

There are several kinds of algorithms used in ML systems, but all are difficult to 
regulate or control, for many of the same reasons as data. They are strings of code 
built on computing architectures, capable of being emailed, saved on an external hard 
drive, or simply uploaded to online repositories such as GitHub, which recorded almost 
2 million contributions from 56 million developers in 2020.58 This is to say nothing of 
the growing, remote AI software licensing industry.59 Among democracies, it is unlikely 
that regulatory and law enforcement agencies could monitor the online transaction of 
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information such that they could reasonably know when and where AI algorithms 
change hands. Doing so would require restricting access to open-source repositories 
like GitHub, closing off vectors of open-source research collaboration, and 
hamstringing the U.S. AI industry. 

Given the AI sector’s reliance on international research collaboration, imposing 
meaningful export controls would be nothing short of a mortal blow to AI research and 
development.60 But even in a tightly controlled digital panopticon, distinguishing 
between ML models capable of recognizing military targets—vice those capable of 
identifying school buses and stop signs—would be an unreasonably tall order. AI is 
not a dual-use component; it is a field of general-purpose technology. The same 
language transformer being used to identify famous paintings and generate websites 
is capable of unleashing a wave of disinformation.61 

While the distributed nature of ML models makes a broad decoupling regime targeting 
this input unlikely, more targeted approaches seeking to control algorithms in certain 
domains may be possible. One present-day illustration can be seen in the fact that the 
risk of abuse inherent in some AI systems is leading some developers to delay 
publishing or restrict access to the most cutting-edge models.62 

The research lab OpenAI, for example, restricted access to its generative language 
model GPT-2 more than six months after announcing its existence to the public.63 In a 
blog post entitled “Better Language Models and Their Implications,” the lab warned 
that its language model could generate misleading news articles or impersonate 
others online, and urged researchers and governments to consider the societal risks of 
advanced transformers.64 For its massive, 175-billion-parameter successor, GPT-3, 
OpenAI did not open the source code at all, but created an API off of which developers 
could build applications.65 Today the lab vets and grants interested researchers access 
to the API to work only within approved research areas.66 

Yet even here there are doubts that a narrower, more targeted decoupling regime 
would be able to effectively limit rival progress even on specific application areas of AI. 
For one, the wide distribution of research results within the field and availability of 
open-source software means that it can be straightforward for a rival to access near-
substitutes for a strategically critical algorithm. 

GPT-3 offers a good illustration of this. While OpenAI was indeed able to limit access 
to its uniquely advanced language model for a period of time, similarly advanced 
substitutes were available in open-source channels a little more than a year later.67 
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Decoupling regimes targeting algorithms would likely confront similar challenges in 
limiting rival access. 

Second, algorithms are ultimately pieces of software, meaning that they are easy to 
distribute and nearly costless to copy and store. This may make decoupling regimes 
targeting algorithms uniquely vulnerable to being undermined through espionage. 
Rather than requiring the exfiltration of a physical component, a rival simply needs to 
obtain access to a computer system containing the algorithm to cripple an algorithm-
focused decoupling effort. 

Algorithms for ML are unpromising targets for a decoupling regime for many of the 
same reasons as data: they feature a diffuse and widely distributed supply chain. 
Narrower decoupling regimes targeting specific kinds of algorithms are also 
unpromising since substitutes are likely to be easily accessible to a rival and vulnerable 
to espionage.  

Compute: A Possible Option? 

Of the three major inputs to the “AI triad,” computing power stands alone as an 
obvious target for a decoupling regime given the geographic concentration of its 
supply chain. These are processors designed expressly to handle the computationally 
demanding needs of AI systems. As prior CSET research indicates, only cutting-edge 
AI chips, typically with a transistor density of 10 nanometers or below, are suitable to 
train and run cutting-edge neural networks.68 Older computer chips take too much 
time—sometimes months—and generate millions of dollars in electric bills.69 Chips are 
discrete, physical products, produced in batches with serial numbers from a handful of 
known factories on earth. Those factories are principally located inside the continental 
United States and among some of its chief partners: Japan, South Korea, and Taiwan.70 

What’s more, while the United States and its allies are ahead in AI chip production, 
China is behind. In their report AI Chips and Why They Matter, Saif M. Kahn and 
Alexander Mann explain that even though Chinese firms are becoming more 
competitive in designing AI chips, even well-known design firms such as HiSilicon 
“outsource manufacturing to non-Chinese fabs, which have greater capacity and 
exhibit greater manufacturing quality”—particularly those in the United States, Taiwan, 
and South Korea.71 In 2020, foreign imports filled 84 percent of the Chinese market for 
semiconductor devices.72 Other analysts have concluded that “Beijing has ‘no prospect’ 
of reaching its goal of 70 percent self-sufficiency by 2025.”73 
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China’s chip dependency on the United States and its strategic partners has created a 
situation that is particularly conducive to export controls. For twenty years, U.S. 
government policy has intended to keep Chinese semiconductor manufacturing 
capability approximately two chip “generations” behind that of U.S. firms, although the 
gap has been narrowing.74 Military end-users in China are, in theory, unable to 
purchase high-end AI chips from the U.S.-based firms that make them, and the U.S. 
government has worked to persuade allies to adopt similar export control regimes. 

These export controls on advanced semiconductor devices have met some success. 
Engineers at Chinese defense state-owned enterprises frequently complain that they 
lack the requisite advanced AI chips to develop and deploy AI.75 Restrictions on military 
end-users have cut the revenue of China’s premier technology companies, including 
Semiconductor Manufacturing International Co. and Huawei, its principal customer.76 

The semiconductor supply chain is concentrated at multiple levels, making it even 
more promising as the target of a decoupling regime. Semiconductor factories—
referred to as foundries—themselves rely on equipment that is itself concentrated. For 
instance, an extreme ultraviolet (EUV) photolithography machine is a semiconductor 
foundry’s most sophisticated and expensive tool, enabling cost-effective mass 
production of the most cutting edge and powerful processors.77 Of the five subject 
matter experts CSET interviewed regarding AI decoupling, all cited lithography as a 
chokepoint technology in AI development, and three specifically discussed the role of 
extreme ultraviolet lithography.78 Just two companies in the world manufacture the 
photolithography equipment required to fabricate high-end chips: ASML in the 
Netherlands, and Nikon in Japan.79 Only ASML produces high-end EUV equipment. 
Despite Beijing’s redoubled efforts to catch up in semiconductor manufacturing 
equipment, Chinese firms remain reliant on foreign firms for several components in the 
semiconductor manufacturing equipment.80 

The Fragility of Compute-Based Decoupling 

Given the high degree of geographic concentration in the supply chain, computational 
power would initially appear to be promising candidate for a decoupling regime 
targeted at slowing rival progress in the technology. However, a deeper examination 
suggests that such a compute-focused decoupling regime would be fragile at best for 
achieving this end. While export controls focused on the semiconductor supply chain 
may effectively inhibit rival ability to make progress on some aspects of AI, there are 
three reasons to believe that these limitations will be narrow in scope and potentially 
short-lived. 
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First, superior access to computational power may ultimately offer only limited 
advantages in advancing the capabilities of AI systems. Expanding computing power 
has facilitated significant leaps in the capabilities of ML systems in recent years, but 
these gains may ultimately be confined to improving AI performance along certain 
dimensions.81 

Researchers have observed that current ML systems may not be able to fully achieve 
the broader ambition of giving computers a wide range of cognitive abilities. The ability 
for computers to reason causally, for instance, may be one task that is impossible to 
achieve purely through the current data- and compute-intensive methods of 
performing ML.82 This may limit the effectiveness of existing ML systems in key areas 
such as medicine, where the ability to identify a causal relationship between a 
treatment and an outcome may be critical.83 Similarly, existing ML paradigms may be 
unable to successfully recognize the presence of “distributional shift,” a common 
failure mode whereby an AI system is unable to adjust successfully to a new context.84 
This may limit the application of the technology in high-stakes scenarios where rigid 
behavior on the part of the AI system would create danger for operators. 

Broadening the range of cognitive capabilities for machines may depend less on access 
to superior computing power and more on advancements in algorithm architecture and 
in the processing of data. Much work in the subfield of causal inference relies on 
improving system behavior without requiring significant leaps in computational power. 
To the extent that this is the case, limitations on rival access to computational power 
may only create narrow limitations on a rival’s ability to acquire important capabilities 
in AI. 

Second, cutting-edge chips are critical specifically in training, the process by which a 
ML system first acquires the ability to achieve a defined task. But it is unclear that 
limiting rival access to training new models will be the strongest determinant of 
national competitiveness in this emerging technology. 

For one, a rival is likely to have access to a rich corpus of pretrained models in open-
source repositories, the private marketplace, and through espionage. As explained 
above, ML models are ultimately software and are challenging to control through 
export controls and other tools of economic decoupling. Moreover, harnessing the 
benefit of AI may depend less on the ability to originate new models than the ability to 
effectively deploy existing models for practical use in the field. Solving these “last 
mile” deployment issues in—for instance, enabling AI systems to work on low-energy 
devices—does not rely on access to superior computing power but may be a significant 
determinant in the practical impact of these technology on national power. 
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Finally, advancements in algorithms may significantly blunt the impact of a decoupling 
regime focused on limited access to computational power. Researchers have had 
success in recent years in developing techniques that retain the effectiveness of ML 
systems while significantly decreasing the computational power necessary to train and 
operate them. These include subfields of research focusing on tasks such as 
dimensionality reduction, the simplification of data to improve model training and 
reduce computational load.85 It also includes areas of study such as model pruning, 
which focus on allowing a compression of the size of a model to improve speed and 
lower power and compute consumption on resource-constrained devices.86 

Conceptual breakthroughs in any of these subfields could significantly offset the 
advantages that superior computational power has in advancing the state of the art. 
Decoupling regimes premised on the need for computational power to train AI systems 
will be similarly vulnerable to developments in the field. Indeed, a restrictive 
decoupling regime limiting access to advanced chips is likely only to accelerate rival 
investments in making “low compute” ML systems practicable. The limits placed on 
rival progress through decoupling then, may be brittle to these shifts in the research 
field. 
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Conclusion: Means and Ends 

The U.S. experience in decoupling satellite technologies highlights the importance of 
clarity on means and ends when analyzing the prospects of an export control or similar 
regime. Decoupling is a tactic that might plausibly be deployed to achieve a variety of 
different national ends, with the delay of rival progress on a strategically important 
technology being just one possible objective. Similarly, the objective of delaying rival 
progress is in turn achievable through a variety of different means, the severing of 
supply chains through decoupling being just one possible tactic. 

The historical experience of satellite technologies highlights the need to approach 
decoupling with tempered expectations. To the end of blocking rival access to a 
technology, even stringent decoupling appears to be at best only able to delay, rather 
than categorically halt rival progress. The satellite example also limits our 
expectations about where decoupling will be effective as a means: these tactics appear 
more effective in the case where a geographic concentration of supply chains makes it 
more possible to control the flow of the technology through export controls and other 
measures. 

These factors provide a guide to assessing the promise of strategic decoupling in 
contemporary emerging technologies. In the context of AI, imposing even temporary 
delays on rival progress in the technology may be highly valuable. However, the 
diffuse nature of its inputs in data and algorithms makes it unlikely that decoupling is 
an effective means of achieving this end. The one exception—computational power— 
provides a tenuous lever: while the supply chains present the necessary concentration, 
it is unclear that limiting access to this input is an effective means of denying a rival the 
ability to advance in the technology over the long run. 

While the case for decoupling in AI is a weak one, it represents just one path for 
achieving a strategic delay in rival progress. Alternative tactics such as leveraging 
immigration policies to acquire top research talent, releasing technologies that 
undermine the high-value applications of AI for a rival, and the shaping of technical 
standards all can work towards slowing rival progress more effectively.87 Competition 
in AI features numerous first-mover advantages that justify a continued search for 
alternative tactics of delay in the ongoing national competition around these 
strategically critical technologies. 
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Appendix A: Interview Protocol and Expert Identification and Recruitment 

The research team consulted existing literature, professional networks, and their own 
knowledge to compile a list of subject matter experts for this study. The team targeted 
individuals with expertise, demonstrated by publication or professional position, in one 
of the following areas: space, biotechnology, or AI/ML. The team invited 35 experts to 
participate in an interview and interviewed 23 experts between November and 
December 2020. 

Eighteen interviews were conducted virtually, recorded and transcribed in full. Four 
interviews were conducted virtually but the interviewee requested not to be recorded 
and one interviewee provided responses electronically. Several experts were 
interested in the research, but did not have the time or authorization to participate in an 
interview. 

Ultimately, these interviews guided further desk research into the historical record of 
export controls, and shaped research team understanding of how those lessons were 
applicable or not to contemporary discussions in the biotechnology and AI/ML space. 
To focus the analysis in this report, findings on AI/ML were incorporated into the final 
draft, with the findings on biotechnology being reserved for future work. 

All interviews followed the semi-structured protocol below: 

1. In your industry, how can public policy be used to control relevant supply 
chains, if at all? 

2. We identified four criteria for defining what we call a “linchpin” technology - 
meaning a high-value technology that is amenable to decoupling in ways 
that advantage the United States. The four criteria are listed below. What 
technologies in your industry match these criteria and could be considered 
linchpin technologies?  

Strategic Vulnerability: The loss of private leadership in the 
technology or the future inability to shape the supply chains of the 
technology would place the United States at a significant 
economic/military strategic disadvantage. 

Comparative Advantage: The U.S. possesses a comparative 
advantage in the technology relative to its rivals. 

 



Center for Security and Emerging Technology | 22 

Import Dependence: Rivals currently depend on imports to 
produce or use the technology. 

Controllable: There is the possibility for U.S. policy to influence the 
global supply chain. 

3. In your industry, what are the relative strengths, or comparative advantages, 
of the United States relative to China? What about U.S. allies relative to 
China? 

4. Do you think these advantages will endure over the long term or are they 
temporary? Why? 

5. How much interaction does your industry have with Chinese companies and 
researchers? What is the nature of those interactions? 
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