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acking is a well-established part of statecraft. Machine learning 
is rapidly becoming an arena of competition between nations 
as well. With the continued importance of computer hacking 

and the increasing drumbeat of AI advances due to machine learning, 
important questions emerge: what might machine learning do for cyber 
operations? How could machine learning improve on the techniques that 
already exist, ushering in faster, stealthier, and more potent attacks? On 
the other hand, how might its importance to cyber operations be mis-
leadingly overhyped? 

We examine how machine learning might—and might not—reshape 
the process of launching cyber attacks. We examine the cyber kill chain 
and consider how machine learning could enhance each phase of oper-
ations. We expect certain offensive techniques to benefit from machine 
learning, including spearphishing, vulnerability discovery, delivering 
malicious code into targeted networks, and evading cyber defenses. How-
ever, we caution that machine learning has notable limitations that are not 
reflected in much of the current hype. As a result of these constraints and 
flaws, attackers are less likely to apply machine learning techniques than 
many expect, and will likely do so only if they see unique benefits. Our 
core conclusions are:

•	 Current cyber automation techniques are powerful and meet the 
objectives of many attackers. For most attackers, they will not have 
an obvious need to augment their operations with machine learn-
ing, especially given the complexity of some machine learning 
techniques and their need for relevant data. If current methods of 
automation become less effective or machine learning techniques 
become more accessible, this may change. 

Executive Summary 

H
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•	 In the near term, machine learning has the potential to increase both the 
scale and success rate of spearphishing and social engineering attacks.

•	 Of the machine learning techniques reviewed in this paper, reinforcement 
learning promises the most operational impact over the medium-to-long 
term. Though its potential impact is speculative, it could reshape how attack-
ers plan and execute cyber operations.

•	 Machine learning systems have substantial limitations, such as their reliance 
on salient data, their weakness to adversarial attacks, and their complexity 
in deployment.

•	 Like other cyber capabilities, many machine learning capabilities are inher-
ently dual-use, with the advantage accruing to those who have the resourc-
es and expertise to use them best rather than always favoring attackers or 
defenders. 

The paper proceeds in three parts. The first part covers the state of the art in 
cyber operations today, showing how attackers progress through the kill chain and 
taking care to demonstrate how traditional automation assists them in their efforts. 
The second part considers machine learning in more depth, exploring its differences 
from traditional automation and probing how those differences might—and might 
not—reshape key parts of the kill chain. Among other things, it highlights the way in 
which machine learning could improve discovery of the software vulnerabilities that 
enable cyber operations, grow the effectiveness of spearphishing emails that deliver 
malicious code, increase the stealthiness of cyber operations, and enable malicious 
code to function more independently of human operators. The conclusion takes 
stock, drawing out key themes of geopolitical and technical importance. It argues 
that machine learning is overhyped and yet still important, that structural factors will 
limit the relevance of machine learning in cyber operations for most attackers, that 
the dual-use nature of cyber operations will continue, and that great powers— 
including the United States—should be proactive in exploring how machine learning 
can improve their operations.
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Introduction

he use of a computer at Lawrence Berkeley Laboratory in 1986 cost 
$300 per hour.1 One day, when reviewing the accounting ledgers, 
a system administrator discovered a seventy-five-cent discrepancy. 

The administrator asked another staffer, Clifford Stoll, to investigate. What 
followed was one of the first and most well-documented hunts for a cyber 
criminal. Stoll, in his classic book The Cuckoo’s Egg, details a case study 
in persistence on the part of both the attacker and the defenders that, from 
today’s vantage point, seems to develop in slow motion. 

This attack was not a highly automated quick strike. Instead, it unfolded 
over the course of months. The attack techniques, directed from a computer 
halfway around the world, were manual and relatively unsophisticated, 
yet effective. This slow pace and lack of automation is not surprising. The 
internet at the time had about 20,000 connected computers, transmission 
speeds were measured in kilobytes, and computing power was a fraction 
of what is available on today’s mobile devices. 

The attacker followed an operational process, or kill chain, that has 
largely endured: reconnaissance, initial entry, exploitation of known vul-
nerabilities, establishment of command and control channels, and lateral 
movement across networks. Each of these steps contributed to the ultimate 
objective of exfiltrating sensitive documents from defense contractors, 
universities, and the Pentagon.2 With striking simplicity, the attacker at-
tempted logging onto systems with known account names and commonly 
used passwords, such as “guest.” Even with this rudimentary technique, the 
attacker gained unauthorized access upwards of 5 percent of the time.3  

While the attack was largely manual, automation aided the defend-
ers. Stoll and others established automated systems to alert them when the 

T
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attacker accessed key machines and networks, enabling the team to begin tracing 
the ultimate source of the attacks. Sometimes with the help of court orders and tele-
phone companies, the defenders systematically worked back through the tangled 
network of infected computers toward the attacker. Stoll and his team baited the 
attacker with enticing (but fake) files related to the highly sensitive Strategic Defense 
Initiative—the rough equivalent of Cold War catnip.4 The attacker spent so much 
time online examining the bogus files that technicians were able to trace the intrud-
er’s location: Hanover, Germany. Local authorities eventually charged Markus Hess 
and four of his German associates with espionage for their various roles in feeding 
pilfered documents and network details to the Soviet security agency then known as 
the KGB.

About a year later, Stoll received an alarming call about a new threat: an auto-
mated attack was cascading across the internet, digitally destroying everything in its 
path. Stoll and other computer security experts raced to stop the self-propagating 
code, which became known as the Morris Worm. They succeeded, but not before 
the worm disabled more than 2,000 computers in the span of 15 hours.5 This attack 
stood in sharp contrast to the manual operations of the period and introduced the 
concept of automated cyber attacks. 

The two cases neatly bookend the spectrum of conceptual possibilities when 
it comes to cyber operations. On one end are the plodding manual efforts, pains-
takingly carried out by attackers and thwarted by system administrators and their 
tools in a cat-and-mouse game that unfolds over months. On the other end are the 
automated attack sequences—often lacking nuance or control—that tear across the 
internet at high speed and destroy everything in their path. Operations at both ends 
of the spectrum continue today, though human-directed efforts benefit from more 
automation and automated attacks exhibit greater control than before. 

In this context arrives machine learning, a technology at the core of almost 
all the hype surrounding AI today. Within the last decade, machine learning has 
achieved technical feats that were not too long ago thought to be decades or even 
centuries away. Machine learning algorithms have beaten world champion players 
at fiendishly complex board and video games, demonstrating something akin to 
intuition. These algorithms have devised convincing photos and videos of people 
who never existed, painted compelling portraits, and written music and stories so 
good that they seem humanlike in their creativity. They have done so with rapidly 
increasing speed and quality, charting a growth curve in capabilities that seems to 
point ever upward. 

Against this backdrop of advances, important questions emerge: what might 
machine learning do for cyber operations? How could the improved automation 



Center for Security and Emerging Technology vii

technology improve on the techniques that already exist, ushering in faster, stealth-
ier, and more potent attacks? On the other hand, how might it be misleadingly 
overhyped? 

In this paper, we tackle these questions. To do so, we proceed in three parts. The 
first part covers the state of the art in cyber operations today, showing how attackers 
progress through the kill chain and taking care to demonstrate how traditional au-
tomation assists them in their efforts. The second part considers machine learning in 
more depth, exploring its differences from traditional automation and probing how 
those differences might—and might not—reshape key parts of the kill chain. Among 
other things, it highlights the way in which machine learning could improve discov-
ery of the software vulnerabilities that enable cyber operations, grow the effective-
ness of spearphishing emails that deliver malicious code, increase the stealthiness 
of cyber operations, and enable malicious code to function more independently of 
human operators.  

The conclusion takes stock, drawing out key geopolitical and technical 
judgments. It argues that machine learning is overhyped and yet still important, that 
structural factors will limit the relevance of machine learning in cyber operations for 
most attackers, that reinforcement learning techniques show promise in the medium-
to-long term, that the dual-use nature of cyber operations will continue, and that 
great powers—including the United States—should be proactive in exploring how 
machine learning can improve their operations.
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he kill chain is an established method of conceptualizing cy-
ber operations by presenting a checklist of tasks that attackers 
work through on their way to their objective. Lockheed Martin 

researchers published a canonical paper outlining the idea in 2010.6 

Other organizations, such as MITRE, have introduced more complex 
versions.7 While the kill chain model has limitations—such as portraying 
cyber operations as overly linear—it is a common and useful way to 
begin to understand cyber attacks. We therefore use it as a foundation to 
explore how cyber operations work and how automation that does not 
use machine learning aids attackers; this is the status quo that machine 
learning-enabled automation seeks to advance. 

Attackers will perform some or all of the kill chain’s steps. Depending 
upon their overall objective, attackers may merge several steps by em-
ploying commonly used exploit tools or techniques. Each step they execute 
represents an opportunity for a defender to stop an attack. We discuss six 
steps widely agreed to be important: reconnaissance, weaponization, de-
livery, command and control, pivoting, and actions on objective. Each step 
constitutes its own processes, challenges, and techniques—all of which 
continue to evolve, including with greater automation. 

This section illustrates well-known cases of each step of the kill chain 
and current state-of-the-art techniques. Readers familiar with the cyber kill 
chain and how automation helped enable major operations—especially 
NotPetya, CRASHOVERRIDE, Agent.BTZ, Conficker, and the 2015 Ukraine 
blackout—should feel free to skip ahead to our discussion of machine 
learning in the following section. 

The Cyber Kill Chain1

T
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RECONNAISSANCE 
Attackers must first pick their target. Their process of reconnaissance and target 
selection depends on the objectives. Some attackers will be interested in infecting 
broad categories of users and will largely forego this process. Others are more 
selective in their choice of victims, requiring a more extensive reconnaissance 
effort. In this phase, attackers first identify humans and machines that are worth 
targeting and then gather information about the technical vulnerabilities of those 
targets. 

To inform their search for human targets, attackers can gather important details 
about an organization and its personnel through internet searches, social media 
analysis, and scraping technical online forums. These passive techniques have the 
added advantage of being largely undetectable. Traditional techniques of automa-
tion offer a means to collect, sort, and analyze data collected in this way, signifi-
cantly shortening time spent in this phase and helping attackers plot their next move. 
Such techniques may be augmented with fairly simple machine learning-enabled 
methods to identify the victims most susceptible to a variety of social engineering 
techniques. 

To inform their search for machine targets, attackers can use more active tech-
niques, such as automated scanners that probe target networks for details on their 
connected systems, network defenses, and associated software configurations. 
Available since the late 1990s, nmap is a popular, freely available, automated 
tool that has evolved to include new functionalities and user interfaces, enabling 
attackers to remotely gain more information about their potential targets and more 
easily interpret the results.8 This kind of active reconnaissance is extremely common, 
and most devices on the internet are constantly being scanned by a wide variety of 
malicious actors, many of whom are looking for vulnerabilities to exploit.

WEAPONIZATION
With their targets identified, attackers have to discover and exploit technical 
weaknesses in their target’s software to gain illicit access. Attackers must then 
couple their malware with a vulnerability to create a payload that is later deliv-
ered to their target.9 This process is called weaponization. The right exploit code 
takes advantage of the newly discovered weaknesses and grants the attackers the 
freedom to act in the target’s network, often while remaining undetected. If a cy-
ber operation were a bank heist movie, the malicious code would be the robber 
with just the right set of skills for the specific job. 

Automated weaponization tools can rapidly identify vulnerabilities and assem-
ble code to exploit them. These tools often feature databases of exploits that attack-
ers can search through to find ones that suit their target’s apparent vulnerabilities. 
Some tools, such as Metasploit, list thousands of freely available exploits, each 
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ranked from “Low” to “Excellent” based on reliability, impact, and likelihood of 
crashing the targeted system. Metasploit’s automated capabilities help determine if 
a machine is vulnerable to one or more previously designed exploits. Its automated 
payload generator can combine bespoke malware and known vulnerabilities to aid 
the weaponization process.10 Its auto-exploit feature takes this a step further, giving 
attackers the ability to point Metasploit at their target, provide details on what they 
learned during the reconnaissance phase, and then allow the tool to take the attack 
from there.11 Another tool, AutoSploit, takes automation a step further by combining 
Metasploit with Shodan, which allows users to quickly search the internet for vulner-
able systems.12  

However, these tools, at least at the present time, do not develop new exploits 
autonomously. The hard work of writing code that exploits a previously unknown 
vulnerability is still largely a human-directed endeavor. To find new vulnerabilities, 
attackers often begin by investigating the code that runs on their target’s system, 
again using information obtained during the reconnaissance phase. Tools called 
fuzzers may aid in this process. Fuzzers seek out bugs and vulnerabilities by bom-
barding a selected piece of software with many inputs and monitoring the results. 
These inputs can be entirely random or tailored to the software being tested. For ex-
ample, attackers may seek to exploit commonly used software, such as the Chrome 
browser. They might use fuzzers to enter thousands of inputs into the URL bar with 
the knowledge that only a handful may cause a program to crash. The attackers can 
then study each of these crashes to investigate why it occurred, as such crashes of-
ten hint at software vulnerabilities. From there, they can begin to develop an exploit 
that, once delivered, will grant them illicit access.13  

DELIVERY
The delivery phase of the operation is what most people envision when they 
imagine someone hacking into a system: the attackers typing at a computer and 
exclaiming “we’re in!” After conducting reconnaissance and weaponizing a piece 
of software, the attackers must now complete the sometimes-trivial and some-
times-daunting task of getting that code onto their target system. Making entry into 
the targeted system can happen through machine or human vulnerabilities. 

Some malicious code can be delivered via a watering hole attack, in which 
attackers compromise a legitimate website and infect all of its visitors with an exploit 
targeted at their browser.14 Other operations spread via USB drives infected with 
malicious code.15 Still other operations are carried out via third parties with which 
the target interacts. These operational techniques rely on the attacker moving “up-
stream” to a trusted party over which the victim has no control, such as a company 
that provides IT services or other software to the target. NotPetya, the 2017 Russian 
cyber-attack that caused billions of dollars in damages to the computer networks 
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of companies and nations globally, illustrates this method: the vector of infection for 
the first tranche of victims was through an automatic update function in a piece of 
tax software ubiquitous in Ukraine.16  

When targeting human weaknesses, attackers often use social engineering to 
induce behavior that compromises an organization’s security. The attack methods 
deployed against people are as varied as our emotions. Attackers have faked 
phone calls from IT departments, claiming an emergency is underway and that the 
organization needs their password immediately to stop an attack. Spearphishing 
attempts exhibit much creativity, too; an attacker may spoof an email address to 
resemble the HR department and send an email with a subject line “2020 Salary 
Scale - Confidential” with a weaponized document attached, after which the 
attacker might immediately send another email with the subject line “DO NOT OPEN 
PREVIOUS EMAIL”—a warning that only makes users more curious and entices 
them to download the malicious code in hopes of seeing confidential compensation 
documents. A 2019 Verizon study found that for the median company, more than 
90 percent of all detected malicious code was initially delivered via email, and that 
spearphishing—which remains a largely manual process—was used by 78 percent 
of attackers conducting cyber-espionage operations.17  

Attackers can use spearphishing at many points in the attack cycle, and at a 
large scale.18 For example, in 2016, Russian military intelligence operatives targeted 
key members of the Democratic National Committee and John Podesta, chair of Hil-
lary Clinton’s presidential campaign.19 The scale of the effort, which featured more 
than 9,000 spearphishing links, illustrates both the perceived value of the technique 
as well as the decision calculus of phishing with so many spears: send out a large 
number of targeted emails and hope a few unsuspecting users take the bait.20 This is 
an area ripe for more automation in the future.

COMMAND AND CONTROL 
After attackers finally infiltrate their targeted system, the next step is to establish a 
secure line of communication to the code they have placed. Through this channel, 
known as command-and-control (C2), attackers can pilot their malicious code 
and execute commands as if they were sitting at the infected computer. Attackers 
create and design their C2 infrastructure based on the victim’s network security 
posture and configuration, the objective of the malicious code, and the frequency 
with which they need to communicate instructions. Variations in C2 structure  
present trade-offs between speed, stealth, and resilience. In some instances, attack-
ers prioritize speed and the ability to exfiltrate large amounts of data. Other cyber 
operations prioritize stealth and use delay-tolerant C2, transmitting information 
through circuitous channels to avoid detection by defenders. As attackers’ objec-
tives change with each hacking campaign, so too do their tools and tactics. 
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Early cyber operations often hard-coded their C2 communication channels and 
offered no flexibility in their malicious code. Like a child dropped off at school with 
a list of numbers to call in case of emergency, these explicit instructions gave the 
malicious code clear direction and little discretion. For example, in the Moonlight 
Maze case from the late 1990s—in which Russian government hackers infiltrated 
the United States Air Force Research Lab, Sandia National Laboratory, NASA, and 
the Department of Energy—the attackers used two common networking protocols 
as their C2 channels.21  Hard-coded channels are easy to block once discovered, 
and so attackers have since evolved ways to obfuscate their C2 methods. 

In 2008, Conficker, a virulent computer worm, signaled the beginning of a new 
era. It was the first well-publicized instance of malicious code utilizing C2 infrastruc-
ture that was not hard-coded with a preset directory of domains to check.22 The first 
version of Conficker used an algorithm to generate pseudo-random domain names 
for C2, essentially expanding and changing the list of numbers it would call. By 
using such an algorithm, the attackers determined which channels Conficker would 
call out to at any given time in a way that defenders had a hard time predicting 
and blocking. Conficker originally generated 250 new possible C2 channels every 
single day. 

Later versions of Conficker took this further, increasing the number of daily gen-
erated domains and, more significantly, incorporating a peer-to-peer C2 option. 
With the peer-to-peer upgrade, computers already infected with Conficker could 
connect to one another for updates and relay commands between versions with ac-
cess to the internet and those without. This feature represented an important increase 
in the capability of C2 infrastructure, one that frustrated defenders who still believed 
that blocking the malicious code’s C2 domains was the best solution. The practice 
of using various automated techniques to avoid preset C2 infrastructure is now quite 
common.*  

Sometimes the target of attacks is air-gapped or logically separated from the 
internet. In those cases, attackers may resort to different C2 mechanisms that are 
both delay tolerant and capable of bridging the air gap. For example, a top-tier 
Russian hacking group known as APT28 continues to use a wide array of tactics, 
including the USBstealer malware, to do this. This malware provides a mechanism to 
copy files from physically separated networks for later exfiltration, often through the 
same C2 network. It also allows commands to be connected across infected and 
potentially air-gapped devices. Attackers can add specific execution commands to 
infected USB drives; these commands are then automatically propagated onward 
as the USB drive makes its way to new victim systems.23 

*For example, see the discussion of HAMMERTOSS below. 
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A separate sophisticated Russian hacking group, known as APT29 or Cozy-
Bear, in 2015 started using its own automated techniques to obscure C2. It de-
ployed a mechanism in its HAMMERTOSS malicious code that camouflaged C2 
activity among normal network traffic.24 HAMMERTOSS exploited the defender’s 
trust of websites like Twitter, Github, and Microsoft Azure. HAMMERTOSS first 
checked a Twitter profile selected by an algorithm at a preset interval, from which it 
collected a decryption key hidden in that profile’s latest tweet. The code then visited 
a GitHub account linked in that same tweet and downloaded a photo posted by 
the actor from that account. From there, HAMMERTOSS decrypted its instructions 
hidden inside the photo with the decryption key posted by the attackers’ Twitter ac-
count. To blend in with normal office web traffic, HAMMERTOSS did all of this only 
during work hours. The attack demonstrates the benefits of camouflaging behavior 
by automatically hiding in the noise, making it hard for defenders to detect the C2 
activity and track the attackers’ operations. 

If the attackers believe that every step of their attack can be automated in 
advance, they may forego the use of C2. The aforementioned Morris Worm, for 
instance, avoided using a C2 system because doing so would have slowed down 
the worm’s spread and provided a means of more quickly identifying the attacker. 
The price of this decision was the attacker’s total loss of control, which allowed the 
worm to cause far more damage than had apparently been intended. 

Autonomy and C2 are thus related: most cyber operations will involve C2 infra-
structure until attackers are able to automate reliably the essential elements of their 
operation. For example, it is reasonable to assume attackers will continue to include 
C2 for long-term data exfiltration campaigns because the operational objectives 
require the ability to send information back. Likewise, C2 may also persist as a fail-
safe function for malicious attack code; in the event of an error or environment that 
the malicious code cannot process through its other automated functions, having 
the ability to phone home allows operational resilience in the face of unforeseen 
complications. On the other hand, for some future attack operations carried out by 
risk-tolerant adversaries, C2 may be less important if key parts of the kill chain can 
be automated, beginning with pivoting. 

PIVOTING
Achieving an operational objective almost always requires compromising more 
than one device. After gaining access to an initial machine, attackers usually shift 
their attention to pivoting: the act of using a compromised system to infect other 
systems. Sometimes the primary goal of an operation is to spread to as many 
computers as possible. However, indiscriminate pivoting often increases the risk of 
detection, so many operations invest significant attention into pivoting strategical-
ly, identifying the most promising follow-on systems in a steady advance toward 
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the ultimate objective. Either method of pivoting includes two distinct components: 
privilege escalation, which involves gaining additional access and permissions to 
a compromised system, and lateral movement, which involves using credentials or 
software vulnerabilities to gain access to additional machines.25 

Pivoting may make use of tools that exploit the same technical or human vulner-
abilities attackers used to gain initial access to a network. For instance, attackers 
who have compromised trusted email accounts within a network—such as admin-
istrator accounts maintained by IT staff or accounts of senior employees—may use 
them to engage in further spearphishing, directly targeting accounts with still higher 
administrative privileges in order to get additional passwords and access.26 Or a 
software exploit that granted illicit access to one machine on a network may work 
just as well against other machines. 

As in the aforementioned Morris Worm, some code automates pivoting, propel-
ling itself onto additional machines or networks. Although worms usually do not dis-
criminate between different networks, they can be designed with an understanding 
of a target’s network architecture. A famous example was a worm, known as Agent.
BTZ, that infected both unclassified and classified United States military networks 
in 2008. Attackers used USB drives with malicious code that self-propagated and 
caused a significant number of infections.27 In this attack, infected systems compro-
mised USB drives connected to them, and then the drives infected additional systems 
when connected elsewhere. Malicious code on the devices enabled the attackers 
to exfiltrate files from these machines, even if they were not directly connected to the 
internet. 

Since Agent.BTZ, auto-propagation systems have become more powerful. Until 
Windows 8.1, for instance, all Windows machines stored and automatically reused 
credentials so that users would only need to input them once. When the potential 
vulnerability introduced by this system was pointed out to Microsoft, the firm did 
nothing, arguing that the credentials were stored in memory that would only be 
accessible if an attacker had already obtained administrative control over a ma-
chine.28 But a French information technology manager realized in 2011that if an 
attacker could compromise one machine on a network, the attacker could find these 
stored credentials in memory and use them to compromise additional machines. 
His automated tool, Mimikatz, does exactly that: after first gaining access to one 
machine, Mimikatz can automatically scoop up a user’s credentials and use them to 
access any other machine on which that user has an account. Mimikatz has become 
one of the most-used pieces of code deployed by attackers, and almost all Win-
dows machines remain vulnerable to it today.*  

*The reason: although all versions of Windows since 8.1 have let users disable the credential-storing 
functionality, an attacker with full administrative privileges can simply reenable the option.
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While worms using these types of self-propagation techniques can be extremely 
powerful, automation can sometimes undermine an operation’s strategic goals. The 
previously mentioned Agent.BTZ’s auto-propagation system flung it far beyond 
Department of Defense networks, with infections occurring across the world years 
after its initial release.29 More interesting still is the aforementioned case of Con-
ficker. By the time the worm was discovered in November 2008, it had already 
infected millions of machines with code that instructed each machine to attempt to 
contact a well-known criminal website on December 1, 2008. But when the day 
came, the sudden surge of traffic brought the site itself down. In effect, the worm 
had become so large that it could not sustain its own weight.30 Though Conficker 
continued to infect computers for years afterwards, it was never again used for any 
meaningful operations—possibly because it had already spread too far and attract-
ed too much attention.31 

ACTIONS ON OBJECTIVE 
All of this offensive effort, from reconnaissance to pivoting, is a means to an end. 
If the attackers succeed at every step in the kill chain to this point, they can finally 
act against their target to fulfill their objective. These actions on objective can be-
gin once the attacker has verified that they have reached their target machine—
often confirmed by the computer name, files on the computer, or its position within 
the network. For indiscriminate campaigns, any computer will suffice. 

Data exfiltration is the most common action on objective, and with good rea-
son.32 For example, the ability to save years of research and development by 
stealing the plans to a major weapons system is highly valuable to an attacker. 
Some states—most notably China—have engaged in long-term intellectual property 
theft in order to advance their strategic goals.33 Cyber espionage can allow intrud-
ers to silently extract secrets for years on end. 

One notable case of cyber espionage is worth discussing because of its marked 
lack of automation. In 2012, Federal Bureau of Investigation (FBI) officials uncov-
ered emails between three Chinese agents that indicated they were attempting to 
steal detailed plans for the C-17, a workhorse American cargo aircraft. But the Chi-
nese hackers had a problem: although they had gained access to a number of cru-
cial networks, they could not exfiltrate every file without raising suspicion. Worse, 
they lacked the tactical knowledge to know which files were the most important. To 
solve this problem, they contracted with Su Bin, a Chinese aviation expert living in 
Canada. The hackers sent Su lists of thousands of files. He examined the names and 
manually indicated which files appeared the most worth copying. By November 
2014, the Chinese military had created its own knock-off version of the C-17 using 
the stolen files—though unfortunately for Su, this success did not prevent him from 
being one of the few Chinese hackers arrested by Western governments.34  
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Of course, not all data exfiltration requires such manual work. Automated tools 
have been built to exfiltrate a variety of different types of data. For example, some 
tools automatically exfiltrate any filename that contains a specific extension or 
record and exfiltrate every keystroke made on an infected computer.35 However, the 
larger the net that attackers cast when exfiltrating data, the more easily defenders 
can notice their activity, which makes indiscriminate grabs useful for attackers only if 
long-term data extraction is not the goal—or if no one is watching. 

Other actions on objective are more aggressive than exfiltration. Attacks can 
be motivated by profit, including operations that encrypt critical files until a ransom 
is paid or compromise financial systems and make fraudulent transfers—a tactic 
that has been used by North Korea to enrich itself by tens of millions of dollars.36 

Other attacks are motivated by the goal of resource hijacking, in which a network 
is compromised in order to use its computational power for some other goal. Some 
Chinese actors, for instance, have been observed compromising networks in order 
to convert them into cryptocurrency mining tools.37  

Other attackers seek to infect large numbers of vulnerable computers to create 
vast botnets that can then be used to attack unrelated targets. This is often part of 
a distributed denial of service attacks, in which a botnet sends so many useless 
requests to a target that the target becomes overwhelmed and legitimate users are 
prevented from accessing it. The process of compromising large numbers of systems 
for these operations is highly automated and often indiscriminate. 

Still other attack objectives, however, are motivated by the pure desire to sabo-
tage compromised systems or create chaos. This was the ultimate goal of the afore-
mentioned NotPetya. The attack initially appeared to be a campaign motivated by 
profit because it repurposed ransomware to encrypt major files and displayed a 
ransom message on many machines. In actuality, after infecting a machine and au-
tomatically spreading to adjacent machines, NotPetya encrypted each computer’s 
master boot record, a critical component that assists in loading the operating system. 
Because NotPetya contained no mechanisms to reverse this encryption process, the 
only motivation was destruction, pure and simple. 

Even more troubling than the type of digital destruction caused by NotPetya 
is the possibility of physical destruction. Attacks can cause physical destruction by 
undermining computer systems that oversee physical infrastructure. Although such 
attacks are often theorized, very few operations over the last decade have specifi-
cally targeted industrial control systems.38 In large part, this is due to the complexity 
of most industrial control systems infrastructure, which is typically so esoterically de-
signed that it can only be manipulated by experts with extremely advanced techni-
cal knowledge of the system in question. However, it is also clear that these systems 
continue to be a focus of attackers. In 2017, the Department of Homeland Security 
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and FBI issued warnings that attackers had gained access to a wide variety of con-
trol systems as part of a longer-term campaign strategy to lay the groundwork for 
future disruptions.39  

There is some evidence of increasing automation in attacks on industrial control 
systems. In 2015 and 2016, Russian attackers launched major operations against 
the power grid in Ukraine. The differences between the two attacks provide a pow-
erful signal about the future of destructive cyber operations. 

The 2015 outages used a number of automated systems to conduct recon-
naissance and wipe data, but the actual attack was decidedly manual. Attackers 
gained control of infected industrial control systems and manually clicked through 
the controls that would open circuit breakers and halt the flow of power. Oper-
ators watched in horror as their computers started sabotaging the grid in front of 
them. But despite the terrifying visual of a computer cursor seemingly moving with a 
malicious will of its own, each manual attack at each substation required a distinct 
human operator. Video from the attack also suggests that the attackers were not ex-
actly sure how to bring down the grid and had to do a bit of exploring in the middle 
of the attack—a telltale sign that they were in no position to adequately automate 
the attack ahead of time, despite their extensive reconnaissance. 

A year later, Russian attackers launched a new piece of malicious code called 
CRASHOVERRIDE.* CRASHOVERRIDE was meant to substantially automate the 
attack process: its core module could automatically find circuit breaker controls and 
toggle them on and off, creating a blackout.40 Analysts also noted that the malicious 
code could be easily adapted to other power grid systems in Europe, the Middle 
East, Asia, and the United States.41 In effect, the creators of CRASHOVERRIDE had 
developed an automated weapon that they could easily adapt for electrical grids 
all over the world, and that they could use, in theory, to generate blackouts at the 
flip of a switch. Describing the complexity and power of the attack code, the secu-
rity firm ESET wrote that, “any intrusion into an industrial network with systems using 
these protocols [targeted by CRASHOVERRIDE] should be considered as ‘game 
over.’”42 This attack is perhaps the most powerful sign yet of the role increased auto-
mation will play in the future of offensive cyber operations. 

*CRASHOVERRIDE is sometimes known as Industroyer. 
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s the preceding section showed, automation is already part of 
cyber operations. Attackers create and use rule-based auto-
mated tools to power their operations, often with enormous ef-

fect. Outside of cyber operations, another kind of automation—machine 
learning—has proven enormously powerful in recent years. Advances in 
machine learning have transformed other disciplines; to what degree will 
they transform cyber operations? This is a vital question.   

The key difference between traditional rule-based and machine learn-
ing systems is that machine learning systems have the capacity to learn 
and modify their own behavior to achieve some measurable objective. 
Machine learning is not by definition more powerful or more sophisticated 
than rule-based automation. It is simply different, and in ways that offer 
exciting, intriguing, and alarming possibilities. 

Imagine trying to build a program to automatically guess passwords. 
Rather than simply guessing every possible combination of letters and 
numbers, engineers might use a long list of heuristic rules to create a pro-
gram that could work far more efficiently. For instance, the program might 
try combining common words from a dictionary, or it might be instructed 
to replace “S” with “$.” But this approach requires humans to identify and 
code each of these rules. By contrast, a machine learning program could 
be given a set of commonly used passwords and could learn which combi-
nations of letters and numbers occur most frequently, thereby learning how 
to most efficiently crack passwords without any need for explicit human 
instruction. Moreover, a machine learning program could continue updat-

How Machine 
Learning Can (and 
Can’t) Change 
Offensive Operations
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ing its behavior based on its own track record or the addition of new data (such as 
sets of stolen passwords from data breaches).

Machine learning systems require a single measurable objective in order to 
assess and improve their performance. In the case of the password-guessing pro-
gram, that objective might be how many accounts are successfully cracked, possi-
bly weighted by the importance of the account. In many other cases, however, it is 
much harder to distill operations to just a single objective, especially when major 
tradeoffs are at stake. Offensive cyber operations often involve such tradeoffs, mak-
ing machine learning systems less applicable.

In the password-guessing example, we can imagine different scenarios in which 
either a rule-based or a machine learning-based system might perform better. For 
example, companies may track their customers’ most common passwords and dis-
suade them from using certain ones that are becoming too common. In this context, 
a rules-based system would quickly become obsolete unless it was manually updat-
ed with new likely passwords, while a machine learning system could update itself 
as it observed customers gravitating toward new passwords. On the other hand, 
perhaps the attackers are only looking to crack a small number of accounts and do 
not have the capacity to make many guesses. In this context, a machine learning 
system would not have enough data to improve itself and a traditional approach 
would be better suited. This lack of data from which to learn is a recurring problem 
in offensive cyber operations, and limits the applicability of machine learning. 

With these general abilities and frailties, machine learning systems are ripe to 
improve automation in some parts of the kill chain but are deeply unlikely to matter 
much for other tasks. To explore the impact of these systems, we focus on four types 
of machine learning: supervised learning, adversarial learning, generative learning, 
and reinforcement learning. These terms are somewhat abstract and not mutually 
exclusive, since some of the most compelling recent advances in AI capabilities 
have come from combining multiple machine learning techniques. Nonetheless, 
each of these four types of machine learning can help attackers with specific parts 
of the kill chain.* 

SUPERVISED LEARNING
Supervised learning systems are perhaps the most straightforward kind of ma-
chine learning. The approach is often used for classification tasks, such as de-
termining if an email is spam or not. To train such systems, engineers provide the 
machine with data sets of examples that include the proper classification, such 

*Not all of these terms align perfectly with the practitioner’s usage, especially the term "adversarial 
learning," which means something far more specific to practitioners than the meaning we attach 
to it in this paper. We use these terms in a less precise way in order to group multiple approaches 
together heuristically and allow the policymaker to understand some of the intuitions behind what 
makes machine learning successful at specific tasks.
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as thousands of emails marked as spam or not spam. From these examples, the 
system learns which patterns—such as the text of the email—correspond to which 
classifications. Similarly, supervised learning systems can be trained to spot soft-
ware running on a network that is likely to be malicious by learning what activity 
is normal and what activity is anomalous.43

Supervised learning can also help both defenders and attackers with an im-
portant question: which vulnerabilities are worth exploiting? Defenders will want 
to prioritize their security efforts to remediate these weaknesses. Attackers will 
want to exploit the most damaging of these flaws in the weaponization and deliv-
ery steps of the kill chain. Machine learning can help both sides determine where 
to focus their efforts. 

Network defenders historically used crude scales to determine which vulnerabil-
ities are the most severe. One scale, known as the Common Vulnerabilities Scoring 
System (CVSS), measures the severity of vulnerabilities based on three groups of 
characteristics, ranging from what privileges are required to whether the vulnera-
bility requires user interaction.44 More recent supervised learning approaches study 
and predict which exploits attackers are most likely to employ.45 The Exploit Predic-
tion Scoring System (EPSS) was trained on proprietary data from anti-virus vendors. 
The training data included information about a list of known vulnerabilities, including 
their software vendor, the relative severity of the vulnerabilities, and whether mali-
cious code had already been written to exploit them. This data allowed the EPSS to 
determine which vulnerabilities most deserved defenders’ attention. The result was a 
76 percent reduction in the number of vulnerabilities that needed to be addressed to 
achieve the same level of security obtained using the old CVSS scale.46 Tenable, a 
cybersecurity firm, advertises a similar product that uses machine learning to priori-
tize patching and performs similarly to the proposed EPSS.47 

Attackers historically relied on experience and intuition to know which vulner-
abilities to exploit, but supervised learning may reshape this part of the kill chain. 
The creators of the EPSS acknowledge that the same technology that can improve 
efficiency for defenders can act as a targeting tool for attackers. Their research 
may provide a blueprint for attackers to either conduct their own similar research 
or to exploit vulnerabilities that EPSS says are “low risk.” Additionally, if defend-
ers prioritize addressing vulnerabilities based on the EPSS, attackers may use the 
inverse approach to select vulnerabilities that are potent yet unlikely to be fixed.48 

In shaping which vulnerabilities get addressed and which get exploited, supervised 
learning will shape cyber operations. 

Supervised learning can also help attackers once the operation begins. While 
defenders use historical network traffic data and anomaly detection tools to identify 
attacks, attackers may be able use the same data and methods to evade detection. 
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One particular cyber defense technique is to create honeypots that simulate actual 
users or machines and look like enticing targets to would-be attackers. Defenders 
can monitor the traffic launched against honeypots to gain insight into their adver-
saries’ tactics and techniques. But a honeypot must be convincing to be effective, 
and defenders setting up honeypots often find it difficult to convincingly replicate 
typical user behavior and network traffic. Attackers can try to determine if the target 
is a honeypot, perhaps by looking for anomalies or determining if the target is a vir-
tual machine (which are often used for that purpose). Some analysts speculate that 
the vast botnet known as Emotet uses machine learning-enabled methods to spot 
honeypots. The Emotet malicious code refuses to infect or quickly removes itself from 
machines that it determines are honeypots, thereby eluding the attempts of research-
ers to track its movements.49 

ADVERSARIAL MACHINE LEARNING
In recent years, AI research has increasingly focused on machine learning tech-
niques that learn from trial and error, rather than by interpreting historical data. 
Oftentimes, these learn-by-doing AI systems can be designed with the goal of 
“beating” some other system, whether a regular piece of software or another AI. 
These types of AI are often known as adversarial machine learning.50 Adversari-
al machine learning systems can be useful at various stages of the kill chain, but 
attackers use them for two specific tasks: weaponization and defense evasion 
(which is helpful throughout the entire kill chain). 

During the weaponization stage of the kill chain, an attacker may find vulnera-
bilities in some piece of software on a target network that can be exploited to gain 
entry. One means of pursuing this strategy—as described in the section on weapon-
ization—is to use fuzzers to find inputs that cause a crash that may hint at underlying 
vulnerabilities.51 In recent years, some fuzzers have turned to systems that rely on 
machine learning or techniques adjacent to machine learning. These algorithms first 
randomly produce thousands of inputs, then examine which inputs caused unex-
pected behavior in the target system and which did not. At this stage, the principle 
of survival of the fittest is applied: unsuccessful mutations are culled from the popula-
tion, and successful variants are themselves randomly mutated to produce thousands 
of new inputs. This type of adversarial AI can both learn the expected input structure 
of a computer program while simultaneously finding subtle ways of breaking that 
structure to expose a vulnerability.52 Because of their potential ability to better focus 
their search, machine learning fuzzers may enable attackers to find far more signifi-
cant vulnerabilities in the weaponization stage of the kill chain. 

After weaponization, the need for defense evasion arises because attackers 
will have to overcome their target’s security measures as they progress through the 
kill chain. These barriers, such as anti-virus systems, intrusion detection systems, 
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spam filters, and other defenses often use machine learning. While the earliest spam 
detection rules-based systems were easily beaten once attackers learned the rules—
such as rewriting “free” as “F*R*E*E” to avoid being classified as spam—modern 
machine learning cyber defense systems are more flexible and harder to evade.53  

These newer defenses are, however, vulnerable to attacks by adversarial learn-
ing systems.54 For example, researchers showed that alterations that to a human are 
imperceptible can fool supervised learning, such as those the separate benign and 
malicious activity to fail.55 More generally, the rise of newer and more powerful ad-
versarial techniques has created a significant worry that the best tools available to de-
fenders may not be able to detect the next generation of cyber attacks.56 These types 
of adversarial approaches will make defense evasion significantly easier for attackers: 
as early as 2016, researchers successfully used a genetic algorithm to create malicious 
code that could randomly mutate itself to evade antivirus software, and by doing so 
repeatedly, could learn what mutations to introduce to remain undetectable.57 

GENERATIVE LEARNING
Supervised learning systems often focus on recognition, such as determining if 
activity is malicious or benign. Adversarial learning systems often focus on ex-
ploitation, finding weaknesses in other pieces of software. A third type of machine 
learning—which we call generative learning—focuses on something altogether 
different: producing new creations that fit within certain parameters. Drawing on 
some major technical breakthroughs in recent years, these systems mimic something 
like imagination.58 These generative learning systems can create very realistic-seem-
ing snippets of text, video, or audio. Among many other achievements, they can 
create “deepfake” images and video and write complex text on the fly.59  

These developments have major implications for cyber operations, some of them 
direct and others less so. The largest impact will likely be on the delivery stage of the 
kill chain, when the goal is often to find ways of tricking unwitting humans within a 
network into installing or executing malicious code. More convincing fake text, au-
dio, or video content is poised to substantially automate this goal, especially when it 
comes to impersonations of particular individuals. Four precedents suggest as much. 

First, GPT-2 and GPT-3, natural language processing systems developed by 
leading research lab OpenAI, can write cogent and convincing text on their own 
using a generative system known as a transformer. GPT-2 has already demon-
strated the capability to produce propaganda based on specific extremist ideolo-
gies.60 GPT-3 can go much further and generate text that not only sounds realistic, 
but that also mimics the style of a particular author—and it can do this after seeing 
only just a few examples of that author’s writing.61 These capabilities have clear 
uses for attackers hoping to automate the crafting of spearphishing emails that 
could impersonate trusted accounts.
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Second, generative learning techniques often improve machine translation, 
which itself enables more effective social engineering. For example, attackers often 
write phishing emails in one language and then translate them into another. As a 
result of poor translation, these emails often contain errors easily spotted by a native 
language speaker. The more machine translation improves, the more effective trans-
lated spearphishing emails will become. This could enable attackers to write lures 
once and translate quickly across a large number of languages.

Third, in the months preceding the 2018 United States general election, a 
researcher at University of Copenhagen conducted an experiment in which a 
machine learning algorithm produced tweets targeting politically active Twitter 
accounts. The algorithm, SNAP_R, used a collection of human-identified Twitter 
accounts as the “inspiration” for writing its own tweets, replicating the substance 
and sentiment of the original content. By the time Twitter suspended the research-
er’s account, 20 percent of people who received a direct tweet had clicked on the 
link; SNAP_R was originally tested and published in 2016, when researchers had 
an even greater success rate (66 percent) with a smaller sample size.62 While the 
links in this experiment were benign, an attacker could use such technology to dupe 
users into visiting websites that deliver malicious code.

Fourth, in late 2019, a criminal used a generative machine learning sys-
tem to replicate the voice of an UK-based energy company’s CEO. Using this 
realistic-sounding voice, the criminal convinced an employee to wire transfer 
$243,000 to the attacker’s bank account.63 As technology for creating deep 
fakes proliferates online, attackers are sure to make use of similar tactics— 
impersonating information technology staff, co-workers, direct reports, and CEOs 
to steal passwords and deliver malicious code.  

Even after delivery, the capacity for generative systems to come up with new 
creations that fit a particular form has implications for the command and control, 
pivoting, and actions on objective stages of the kill chain. At each of these stages, 
attackers are often most focused on accomplishing their activities within a network 
without arousing suspicion. Generative systems can help them do so. 

Past cyber operations have attempted to blend their command and control 
messages into background network traffic by using rule-based automation. For 
example, HAMMERTOSS, as previously discussed, only sent such messages during 
working hours on weekdays. Generative systems can improve on this approach, 
more realistically disguising command and control messages in network traffic.64 As 
organizations continue to move to large-scale adoption of end-to-end encryption that 
hides the data content, the need for obfuscation may lessen, but in esoteric environ-
ments where traffic is not encrypted—such as industrial control systems that control the 
power grid and much else—generative systems can help evade defenses.65  
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REINFORCEMENT LEARNING
Creating fakes that fool a human or an AI is one thing, but creating a system that 
can plan strategically is another. AI is increasingly showing its potential at this 
task; recent research demonstrates that machine learning can beat humans at 
increasingly complex strategic games, from board games like Go to online video 
games like StarCraft 2 and Dota 2. Underpinning these strategic advances is a 
kind of machine learning known as reinforcement learning. The strategic capabil-
ity of these systems may eventually allow cyber attackers to more fully automate 
the reconnaissance, delivery, and pivoting stages, and may also make it possible 
to tailor far more destructive attacks.

A reinforcement learning system utilizes an “agent” with a reward function that it 
seeks to maximize. The reward function is set by the agent’s programmers and cor-
responds to the desired outcomes. For example, when reinforcement learning was 
used to train an agent to play the old video game Pong, the reward function was 
the game’s built-in scoring system. In addition to a reward function, in reinforcement 
learning, programmers create an environment with certain rules and give the agent 
the freedom to act within that environment; in the case of Pong, this was the game 
itself. As the agent interacts with the environment and monitors which decisions result 
in rewards, it learns how to achieve success. By assigning rewards to a specific 
outcome, but not a certain way of achieving that outcome, programmers allow the 
machine learning agent to experiment within the bounded environment to find the 
best strategy.

Reinforcement learning has two major advantages over other machine learn-
ing methods. First, it allows an agent to consider a greater set of possible actions, 
unconstrained by the need for human-curated training data or rules. Second, it can 
enable savvier strategic thinking. To better understand these advantages, consider 
the problem of game-playing. In a simple game like tic-tac-toe, each player has 
a limited set of possible moves and it is easy to list all possible states of play. Pro-
grammers can write a winning program by expressly writing a list of rules (e.g. “if X 
begins in the top left, place O in the center”). In a more complex game like chess, 
supervised learning systems can beat humans by learning the winning moves from 
games played by expert humans. In this context, the supervised learning algorithm 
is trained on thousands of moves made by grandmasters and learns to play the 
game by imitating the kinds of moves most likely to result in victories. 

But for even more complex games like Go, these methods are not enough. It 
is better to create an effective AI by simply teaching the AI the parameters of the 
game and allowing it to play games against itself, experimenting with new strate-
gies rather than relying on past examples. For example, AlphaZero, a reinforcement 
learning program developed by Google’s DeepMind, was able to achieve super-
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human performance at the games of chess, shogi, and Go by deploying strategies 
never before seen in the history of these games.66 The importance of reinforcement 
learning becomes even more pronounced in video games unconstrained by a 
defined board and a sequential, turn-based structure. In these environments, other 
machine learning techniques quickly become overwhelmed with the vast number 
of possible choices available to them. In contrast, reinforcement learning can often 
allow agents to navigate even highly complex game structures, especially if used in 
conjunction with other supervised learning methods as a foundation.67  

Cyber operations share some aspects of complex video games, such as an 
imperfect information environment. There has been considerable research, dating 
back to at least 2005, on how a reinforcement learning agent armed with a set 
of exploits could be taught to pivot strategically across a network, one of the most 
essential parts of the kill chain.68 Reinforcement learning could someday allow the 
type of on-the-fly reasoning that only a human on the keyboard can do right now, 
identifying the users, systems, and data that an intruder can access. The machine 
learning systems showcased in this sort of research thus far, however, often have 
many major limitations, such as requiring complete knowledge of the target network 
or exact knowledge of the success rate of different exploits.69  

Advances in reinforcement learning architectures can help overcome these 
problems. Even without knowledge of a target network, newer reinforcement learn-
ing systems can learn optimal paths to take to reach target machines.70 Deep Ex-
ploit, a machine learning-based penetration testing system, combines reinforcement 
learning with other pieces of software to automatically perform reconnaissance, 
deliver malicious code to the targeted server, and pivot within the network. Rein-
forcement learning allows Deep Exploit to deliver malicious code to a vulnerable 
server on the first try, rather than deploying many vulnerabilities in rapid succession 
to see what works.71  

These approaches still have notable limitations. The most significant is scalability. 
As the number of machines on a network or the number of possible exploits given 
to an AI increase, the computational cost of making the right decisions also grows. 
There are already some proposals meant to address this problem; one possibility is 
to train two reinforcement learning systems that would work in tandem, where one 
identifies the best next target on a network and the other identifies the best exploit 
to use against it, thereby dividing the computational labor required and focusing the 
decision-making power of each network.72 In broad terms, however, reinforcement 
learning systems have displayed a greater ability to generalize from less compli-
cated tasks to more complex ones than previous machine learning approaches, so 
there is little reason to think that the computational cost will prove to be insurmount-
able as algorithms get better and computers get faster.73 
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Although current research in reinforcement learning systems has focused on 
pivoting, it is possible that more advanced reinforcement learning agents may be 
able to automate other parts of the kill chain in the future. In complicated networks, 
the optimal pivoting strategy will depend on which machine attackers first compro-
mise. A more advanced reinforcement learning system might select the ideal foot-
hold based on the attackers’ reconnaissance. Armed with traditionally-automated 
exploitation tools like Metasploit or Autosploit, a reinforcement learning system 
could in theory also iterate through a number of different attack scenarios to find the 
one that it judges to be most efficient, thereby strengthening the delivery and weap-
onization steps of the kill chain. If the reinforcement learning system had reconnais-
sance capabilities, it might even learn over time that certain types of reconnaissance 
data were more useful to mapping out an attack strategy than other types, thereby 
becoming capable of improving reconnaissance efforts. 

Reinforcement learning systems may also prove particularly adept at sabotag-
ing industrial control systems, a key part of the actions on objectives phase for some 
operations. In previous attacks on industrial control systems, attackers programmed 
malicious code to take certain actions on objectives, carefully crafting their attack 
code to have particular kinetic effects. Reinforcement learning applied to industrial 
control system attacks may increase the attacker’s ability to fine tune the impact of 
their attacks, particularly with regards to severity and timing. Trained in a well-mod-
eled environment and given the correct reward function, reinforcement learning 
could help attackers achieve both long-term stealthy degradation of industrial ma-
chines or incredibly destructive attacks with unfathomed speed. 

In addition, reinforcement learning systems can develop the capacity to coor-
dinate their actions, either with other machine learning systems or with humans.74 

This result has significant implications for the use of botnets. Although attackers have 
begun to incorporate some forms of coordination into their botnets—for instance, the 
aforementioned peer-to-peer C2 structure used in later versions of Conficker—there 
is so far no evidence that botnets are capable of making strategically coordinated 
decisions. However, some analysts suggest that in the future, botnets may be able to 
learn collectively about different types of attack strategies or delegate tasks internal-
ly without explicit instructions.75 If such coordination is ever attained, it will likely rely 
on some form of reinforcement learning.  

All told, reinforcement learning systems have recently been incredibly successful 
and improved more quickly than expert observers predicted. After DeepMind put 
reinforcement learning on the map with a series of early successes, many experts 
still doubted that computer victory over top humans at Go was possible, with some 
predicting that it was a decade away. DeepMind’s reinforcement learning-based 
AlphaGo accomplished the feat less than two years later.76 Even after this success, 
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observers predicted that it would be five years before machine learning systems 
could win at the more complex video game StarCraft II; eighteen months after that 
prediction, DeepMind’s reinforcement learning system AlphaStar attained grand-
master status.77 Based on this rapid improvement in capability, it seems imprudent to 
rule out the possibility that a usable reinforcement learning system for cyber attack-
ers might be developed within the next few years. Such a system might find novel 
strategies for key parts of the kill chain that even the most advanced operators have 
missed. 
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e approach our conclusions with a healthy respect for what 
we don’t know. Will current machine learning progress stall? 
Are other significant AI breakthroughs on the horizon? How 

will the underlying landscape of cyber operations change, if at all? To 
what degree will geopolitical factors shape state behavior in cyber op-
erations? Even with these persistent questions, the preceding examination 
of the cyber kill chain allows for some preliminary assessments. 

First, while machine learning advances have occurred in rapid suc-
cession in recent years, their application to offensive cyber operations 
remains narrow. Attackers, especially states, are generally rational and 
will only turn to machine learning techniques if these techniques are 
simpler, cheaper, or more effective than the automated tools that are 
already available and easy to use. Traditional methods of automation will 
remain in vogue for many aspects of the kill chain, though they will be 
supplemented in some areas by machine learning techniques. Second, the 
structural weaknesses of machine learning systems, including their heavy 
reliance on data, their complexity, and their susceptibility to adversarial 
attacks, will constrain their impact on cyber operations in important ways. 
Third, reinforcement learning offers the medium- to long-term possibility of 
overcoming some of these fundamental constraints, and could someday be 
a game-changer for offensive cyber operations. Fourth, machine learning 
advances will likely be dual-use, plausibly benefitting both attackers and 
defenders; which side benefits most will depend in large part on organiza-
tional, not technological, factors. Such organizational factors include both 
the level of resourcing and expertise available.

Conclusion  

W
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MACHINE LEARNING IN CYBER OPERATIONS IS OVERHYPED 
YET IMPORTANT
Machine learning currently rides a wave of ever-increasing hype. But tradition-
al methods of automation already work extremely well for many parts of the kill 
chain. Even if machine learning technology continues to advance at a rapid pace 
in other areas, it does not follow that it will also immediately transform offensive 
cyber operations. For some parts of cyber operations, machine learning tech-
niques may never matter.

For example, it is not clear that machine learning has much more to offer than 
traditional automation when it comes to enabling indiscriminate propagation. 
NotPetya amounted to little more than a well-crafted worm that relied on a com-
mon tool for stealing credentials and a powerful but known vulnerability, and yet it 
spread with great success across thousands of networks around the world. Given 
that NotPetya caused billions of dollars of damage before most IT departments 
were even aware they were under attack, it seems unlikely that any state seeking to 
create similar unbridled destruction would feel the need to develop a more com-
plicated AI-enabled method of propagation. Similarly, although machine learning 
may give botnets new capabilities to coordinate strategically or learn from shared 
experience, the technology will not greatly impact the speed or scale at which so-
phisticated actors can create botnets.78  

Even if machine learning-enabled techniques become a reality, they will still 
depend upon many traditional concepts and tools. New technologies seldom 
displace older ones entirely. For example, while helicopters and mechanized forces 
replaced traditional horse-mounted cavalry, bullets and rifles remain an essential 
part of modern warfare. Likewise, even the most advanced offensive machine learn-
ing tools will not change the underlying cyber operations environment of network 
protocols, operating systems, and applications.

Despite these caveats, there remains little question that attackers will turn to 
machine learning-enabled techniques if they provide an advantage. For this reason, 
machine learning advances will likely partially change the practice of cyber oper-
ations, offering new ways to exploit digital environments and the humans that use 
them. 

Some attack techniques, such as spearphishing, are well-suited for the very 
near-term application of machine learning techniques. There are already natu-
ral language processing systems capable of writing convincing articles in a wide 
variety of styles. This technology, when trained on a corpus of organizational emails 
or other relevant texts, could someday be able to create convincing spearphishing 
campaigns. A mass spearphishing campaign empowered by machine learning 
would accelerate operations, increase the number of potential targets, and allow 
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attackers to focus on other aspects of the kill chain.79 Even if machine learning text 
generation can eliminate only 80 percent of the work that crafting a spearphishing 
email requires, attackers are likely to see it as a major gain worth the cost of adopt-
ing new tactics.

Machine learning also seems poised to help with the process of discovering 
exploitable vulnerabilities, though this is a matter of continued debate. Recent 
advances in fuzzing technology suggest as much. While there will always be a 
significant role for humans in finding and exploiting software weaknesses and while 
autonomous fuzzers that do not use machine learning also show significant promise, 
the task is data-intensive and depends on the ability to recognize patterns—exactly 
the areas where machine learning generally excels. 

The timeline of these and other advances will be governed by how fast machine 
learning progresses and how much attackers invest in deploying the technology. 
Many of the recent breakthroughs in general machine learning—including genera-
tive systems, natural language processing, and reinforcement learning—have direct 
applications for cyber operations. As these broader technologies continue to ma-
ture, they are poised to further alter the cyber kill chain in much the same way that 
traditional automation did previously, though important structural barriers remain. 

STRUCTURAL FACTORS WILL CONSTRAIN MACHINE 
LEARNING IN CYBER OPERATIONS 
In addition to the continued utility of traditional automation, three additional 
factors may constrain machine learning applications within cyber operations. First, 
many machine learning techniques, most especially supervised learning, require 
plentiful and well-structured training data from which to learn. For offensive cyber 
operations, much of that data comes from the reconnaissance portion of the kill 
chain. If defensive systems deny access to large amounts of the necessary data, 
the ability for the attackers to use machine learning diminishes. 

For example, a large-scale spearphishing campaign aided by machine learning 
would seem to need access to emails that show patterns of usage and communica-
tion between various members of the target organization. Absent this data, attack-
ers looking to exploit human error may fall back to more traditional spearphishing 
tactics. Likewise, if attackers are attempting to blend into the background noise of 
the victim’s network, understanding the types of network traffic, volume, and usage 
patterns is critical. Armed with this data, attackers can build stronger command and 
control and exfiltration systems if stealth is a priority. But without this data, it may 
be infeasible to build a machine learning system that can effectively blend into the 
background traffic without triggering alarms.

This need for data provides an advantage for network defenders who have 
greater access to network traffic flows, network-connected devices, and user activi-
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ty logs. Armed with more information, defenders can apply machine learning tech-
niques to enable enhanced defenses. To have the equivalent level of insight, attack-
ers would have to first compromise the defender’s network and associated systems. 
Attackers thus face a classic chicken vs egg dilemma: to get the necessary data to 
apply some machine learning techniques, they first must compromise a network, but 
by compromising a network, they often gain enough of a foothold such that many 
machine learning techniques would be redundant or unnecessary. 

Second, both defensive and offensive machine learning systems themselves 
remain susceptible to a range of adversarial attacks during their training phase 
and after deployment.80 These attacks can cause machine learning systems to fail 
in unpredictable ways. During the training phase of a machine learning system, 
attackers can alter the training data or key features of the fully trained system by 
subtly changing key parameters. Attackers can also apply techniques similar to the 
ones used to fool image classifiers; for intruders, this technique could cause machine 
learning-based intrusion detection systems to misclassify malicious activity, while 
for network defenders it might be useful in thwarting machine learning-enabled 
attacks.81 

Third, even if more effective than traditional rule-based automation, machine 
learning systems might be harder to implement due to the level of expertise re-
quired. Machine learning expertise is rarer than offensive cyber expertise, and the 
combination is rarer still. Presently, many of the significant machine learning ad-
vances have come from a relatively small pool of talented researchers and devel-
opers and, even (or perhaps especially) for governments, demand for talent far out-
strips supply. China explicitly recognizes this in its Thousand Talents program, and, 
like several other countries, is actively recruiting proven machine learning research-
ers with generous compensation packages and research facilities.82 For their part, 
major tech companies have successfully recruited top academic machine learning 
researchers, creating pockets of deep expertise. The limited talent pool further re-
stricts the number of machine learning investment areas that can receive significant 
attention and resources. These commercial and government incentives to produce 
more general machine learning applications may mean relatively less effort will be 
spent on narrower offensive cyber applications, at least in the near term.83

As machine learning capabilities become more capable and easier to use, 
however, intricate expertise may be less essential. Machine learning-enabled tools 
for cyber operations may follow well-established technology adoption arcs in 
which the fruits of a major discovery are initially shared by a few before the tech-
nology is quickly commoditized and requires limited expertise for general purpose 
use. Many mainstream machine learning capabilities, such as image classifiers 
and some generative algorithms, have already been commoditized in this way. 
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The same may occur in the cyber realm. For example, open source machine learn-
ing-based fuzzers may hold wide appeal, much like early ready-to-use exploitation 
kits opened up hacking to individuals with only limited skills. This is not a hypothet-
ical; there are already strong open-source fuzzers available, such as American 
Fuzzy Lop, which uses a genetic algorithm-based approach, though one that is not 
typically considered to be machine learning.84 If machine learning-enabled hacking 
tools become widely available, are easy to use, and have high success, then attack-
ers will have the requisite incentives and capacity to upgrade their capabilities.

REINFORCEMENT LEARNING TECHNIQUES MAY BE A FUTURE 
GAME CHANGER 
Our conclusions thus far have been mostly short-term in their approach. Over the 
medium- and long-term, the situation might be radically different. There is some 
notable evidence that reinforcement learning will reshape many stages of the kill 
chain, though we cannot predict when or how quickly this transition will occur. Of 
the variety of machine learning techniques surveyed in this report, reinforcement 
learning has proven to be the most capable of devising winning strategies in many 
complex environments. While most research has focused on games, the underly-
ing technology has proven to be transferable to constrained network simulations. 
It is unclear, however, how much data is required to construct an accurate simula-
tion; if a large amount of data on the target is required, then to gain the required 
information an attacker will need direct access to the target network itself, lessen-
ing the value of the simulation. 

In general, two distinct developments might accelerate reinforcement learning’s 
impact on cyber operations. First, if in fact large real-world networks can be suc-
cessfully simulated, then reinforcement learning techniques could train within these 
environments. Success would require simulating only key aspects of an actual net-
work environment such as vulnerable systems, trust relationships, and network traffic. 
Second, if reinforcement learning techniques continue to improve their performance 
in very complex environments, they will be more capable of tackling challenges in 
offensive cyber operations. There is good evidence for the continued rapid ad-
vancement of reinforcement learning, including its success in dynamic and complex 
video games like StarCraft II.85 If successful, these more broadly capable reinforce-
ment learning systems could adjust to changing network conditions in real-time and 
reshape more of the kill chain than other machine learning techniques.

THE DUAL-USE NATURE OF CYBER TOOLS WILL CONTINUE
Many cyber operation tools can benefit both attackers and defenders. For exam-
ple, fuzzers have long been a classic dual-use capability. Software developers 
and cybersecurity researchers use them to discover vulnerabilities before they can 
be exploited in the wild, while attackers employ them to look for coveted new 
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vulnerabilities that can be turned into reliable exploits. Likewise, network mapping 
tools provide attackers an easy way to search for would-be victims while at the 
same time providing network defenders a means to routinely assess the security 
posture of their network. Though there are theoretical debates about who these 
tools benefit more, in practice the advantage usually goes to the side that uses the 
tool most effectively. Defenders with more highly trained and resourced person-
nel may be able to gain advantages over attackers because of these automated 
tools, but less capable and well-resourced organizations may struggle to defend 
themselves against the same attacks. 

This complexity and nuance mean that one of the most common questions at 
the intersection of AI and cybersecurity—will machine learning benefit attackers or 
defenders?—is almost certainly far too broad to be useful. If tools like fuzzers begin 
to rely more on machine learning, a competition between attackers and defenders 
will likely occur. The winner of the competition is likely to depend in large part on an 
individual offensive or defensive organization’s ability to deploy the tools, just as is 
the case with traditionally automated capabilities.

The net impact of more speculative future capabilities, such as reinforcement 
learning techniques, will likely also depend on the comparative resourcing and 
expertise of attackers and defenders. For example, robust computing infrastructure 
is important to enable realistic network simulations critical for reinforcement learn-
ing. This computing power does not come cheap but—as it becomes more com-
moditized via Google Cloud, Amazon Web Services, and other offerings—it will 
become more readily available to a wider array of attackers. Similarly, the rein-
forcement learning techniques discussed earlier in this paper require a great deal of 
expertise to develop, even as they offer significant operational capabilities for both 
attackers and defenders. 

Whether on offense or defense, the dual use nature of these tools creates a 
competition for strategic advantage. If, as we theorize, machine learning is likely 
to improve specific aspects of the kill chain in a way that could benefit either side, 
then reaping those advantages becomes an imperative for success. Neither side 
is likely to sit idly by and cede ground to the other. For attackers, inaction risks the 
possibility that machine learning tools will help find and remediate vulnerabilities, 
secure networks, and detect intrusions. For defenders, a failure to use the best tools 
available gives attackers more room to maneuver, more capabilities to deploy, and 
more scale to their operations. 
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GREAT POWERS HAVE THE MOST TO GAIN, IF THEY ADAPT 
PROACTIVELY
Ultimately, policymakers can only craft effective measures if they understand what 
machine learning can—and can’t—do. In the near- to mid-term, machine learning 
will not fundamentally alter the cyber kill chain. The heavy data requirements of 
most cutting-edge machine learning systems and the requisite expertise needed to 
create them will make it difficult to develop useful tools. In addition, open source 
datasets and benchmarks have been enormously helpful for machine learning 
researchers in other subfields, but few similarly large representative and public 
datasets exist for researchers hoping to explore machine learning use cases in cy-
ber operations. States can build up sizable datasets of their own, but doing so is 
a costly and time-intensive process that may further slow the utilization of machine 
learning systems for cyber attacks. 

As a result of these substantial requirements, deploying machine learning in 
cyber operations means overcoming barriers to entry. If only some states have the 
resources and expertise to overcome these barriers, those states will become si-
multaneously better defended and more capable of attacking their rivals.86 In other 
words, machine learning in cyber operations may be less biased toward either 
attackers or defenders than it will be biased toward already powerful states and 
organizations. 

Even so, the barriers that exist today may lower before long. Just as many tools 
of traditional automation were eventually distributed in easily accessible packages, 
it seems likely that some future machine learning-enabled hacking tools will some-
day be widely available for even novices to use.87 Other states, powerful or weak, 
may pursue asymmetric advantage using these tools to target less well-defended 
networks, such as state and municipal governments or critical infrastructure systems. 
Well-resourced states will have to compete by continuously developing better ma-
chine learning and traditionally automated systems and strengthening their defen-
sive posture. 

As a result of these dynamics, the United States has much to gain from devel-
oping new machine learning tools for cyber operations early and much to lose if it 
waits. Maintaining a competitive edge will require constant work on both offense 
and defense. It is yet one more reason that, for as nuanced, complex, and over-
hyped as machine learning is, it remains too important to ignore. 
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