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Executive Summary 

As artificial intelligence begins to transform cybersecurity, the pressure to 
adapt may put competing states on a collision course. Recent advances in 
machine learning techniques could enable groundbreaking capabilities in the 
future, including defenses that automatically interdict attackers and reshape 
networks to mitigate offensive operations. Yet even the most robust machine 
learning cyber defenses could have potentially fatal flaws that attackers can 
exploit. Rather than end the cat-and-mouse game between cyber attackers 
and defenders, machine learning may usher in a dangerous new chapter.  

Could embracing machine learning systems for cyber defense actually 
exacerbate the challenges and risks of cyber competition? This study aims to 
demonstrate the possibility that machine learning could shape cyber 
operations in ways that drive more aggressive and destabilizing 
engagements between states. While this forecast is necessarily speculative, its 
purpose is practical: to anticipate how adversaries might adapt their tactics 
and strategies, and to determine what challenges might emerge for 
defenders. It derives from existing research demonstrating the challenges 
machine learning faces in dynamic environments with adaptive adversaries. 

This study envisions a possible future in which cyber engagements among 
top-tier actors come to revolve around efforts to target attack vectors unique 
to machine learning systems or, conversely, defend against attempts to do so. 
These attack vectors stem from flaws in machine learning systems that can 
render them susceptible to deception and manipulation. These flaws emerge 
because of how machine learning systems “think,” and unlike traditional 
software vulnerabilities, they cannot simply be patched. This dynamic leads to 
two propositions for how these attack vectors could shape cyber operations. 

The first proposition concerns offense: Attackers may need to intrude deep 
into target networks well in advance of an attack in order to circumvent or 
defeat machine learning defenses. Crafting an attack that can reliably 
deceive a machine learning system requires knowing a specific flaw in how 
the system thinks. But discovering such a flaw may be difficult if the system is 
not widely exposed or publicly available. To reach a hardened target, an 
attacker may try to compromise the system during development. An attacker 
with sufficient access could reverse-engineer a system during its development 
to discover a flaw or even create one by sabotaging the process. This 
opportunity to gain intelligence on an adversary’s defenses creates more 
value in intruding into adversary computer networks well in advance of any 
planned attack.  
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The second proposition concerns defense: Guarding against deceptive 
attacks may demand constant efforts to gain advanced knowledge of 
attackers’ capabilities. Because machine learning systems cannot simply be 
patched, they must be able to adapt to defend against deceptive attacks. Yet 
researchers have found that adaptations to defend against one form of 
deception are vulnerable to another form of deception. No defense has been 
found that can make a machine learning system robust to all possible 
attacks—and it is possible none will be found. Consequently, machine 
learning systems that adapt to better defend against one form of attack may 
be at constant risk of becoming vulnerable to another. In the face of an 
imminent threat by an adversary, the best defense may be to intrude into the 
adversary’s networks and gain information to harden the defense against 
their specific capabilities. 

Together these two propositions suggest machine learning could amplify the 
most destabilizing dynamics already present in cyber competition. Whether 
attacking or defending, at the top tier of operations, machine learning attack 
vectors may create challenges best resolved by intruding into a competitor’s 
networks to acquire information in advance of an engagement. This would 
add to existing pressures on states to hack into their adversaries’ networks to 
create offensive options and protect critical systems against adversaries’ own 
capabilities. Yet the target of an intrusion may view the intrusion as an even 
greater threat—regardless of motive—if it could reveal information that 
compromised machine learning defenses. The already blurred line between 
offensive and defensive cyber operations may fade further. In a crisis, the 
potential for cyber operations to accelerate the path to conflict may rise. In 
peacetime, machine learning may fuel the steady escalation of cyber 
competition. Adversaries may adapt by targeting machine learning itself, 
including: 

● Compromising supply chains or training processes to insert backdoors 
into machine learning systems that expose a potentially wide swath of 
applications to possible attacks. 

● Poisoning training data, such as open source malware repositories, to 
degrade cybersecurity applications. 

● Unleashing risky capabilities to circumvent defenses, such as malware 
with greater degrees of autonomy. 

● Targeting defenders’ trust in machine learning systems, such as by 
inducing systems to generate “false positives” by mislabeling 
legitimate files as malware. 
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For the United States and its allies, harnessing machine learning for 
cybersecurity depends on anticipating and preparing for these potential 
changes to the threat landscape. If cyber defense increasingly relies on 
inherently flawed machine learning systems, frameworks and metrics will be 
needed to inform risk-based decisions about where and how to employ them. 
Securing the machine learning supply chain will demand collective 
governmental and private sector efforts. Finally, the United States and its 
allies must exercise caution in the conduct of their offensive operations and 
communicate with adversaries to clarify intentions and avoid escalation.   
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Introduction 

States seeking competitive advantage will likely turn to artificial intelligence to 
gain an edge in cyber conflict. Cybersecurity ranks high among priority 
applications for those leading AI development.1 China and Russia see in AI 
the potential for decisive strategic advantage.2 Military planners in the United 
States envision systems capable of automatically conducting offensive and 
defensive cyber operations.3 On the precipice of a potential collision 
between AI competition and cyber conflict, there is still little sense of the 
potential implications for security and stability.  

AI promises to augment and automate cybersecurity functions. Network 
defenders have already begun to reap the benefits of proven machine 
learning methods for the data-driven problems they routinely face.4 Even 
more tantalizing is the speculative prospect of harnessing for cybersecurity 
the cutting-edge machine learning techniques that yielded “superhuman” 
performance at chess and the Chinese board game Go.  

Yet the machine learning capabilities fueling these applications are no 
panacea. These systems often suffer from inherent flaws. Unlike traditional 
software vulnerabilities, these flaws emerge because of how these systems 
make inferences from data—or, more simply, how they “think.” These flaws 
can lead even highly robust systems to fail catastrophically in the face of 
unforeseen circumstances. In the race between researchers developing ways 
to safeguard these systems and those seeking to break them, the attackers 
appear to be winning. 

What will happen when these powerful yet flawed machine learning 
capabilities enter into the dynamic, adversarial context of cyber competition? 
Machine learning can help mitigate traditional cyber attack vectors, but it 
also creates new ones that target machine learning itself. Attackers will 
systematically try to break these systems. A growing body of technical 
research explores machine learning attack vectors and prospective defenses. 
Yet there has been little effort to analyze how these changes at a technical 
level might impact cyber operations and, in turn, their strategic dynamics. 

This study approaches this problem by exploring a possible worst-case 
scenario: machine learning could amplify the most destabilizing dynamics 
already present in cyber competition. The purpose is not to lay out a case 
against harnessing machine learning for cybersecurity. Precisely because 
these capabilities could become crucial to cyber defense, the aim here is to 
provoke thinking on how to proactively manage the geopolitical implications 
of persistent technical flaws.  
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This study explores how the attack vectors unique to machine learning might 
change how states hack each other’s critical networks and defend their own. 
The unique vulnerabilities of these systems may create problems for both 
offense and defense best resolved by intruding into adversaries’ systems in 
advance of an engagement. For offense, this arises from the potential need 
for exquisite intelligence on, or even direct access to, a machine learning 
system to reliably defeat it. For defense, this arises from the need for 
advanced knowledge of a specific attack methodology to ensure a defense’s 
viability against it. 

The combination of these offensive and defensive imperatives could 
exacerbate the escalation risks of cyber engagements. States would have 
even stronger incentives to intrude into one another’s systems to maintain 
offensive options (for contingencies such as armed conflict or strategic 
deterrence) and to ensure the viability of their own defenses. Yet it may be 
even harder to differentiate cyber espionage from intrusions laying the 
groundwork for an attack; the target of an intrusion may assume that it is 
preparation for an imminent attack, or that it will at the very least enable 
offensive options. As adversaries struggle to gain an edge over one another, 
the line between offense and defense—tenuous as it already is in cyber 
operations—fades. This dynamic may fuel the steady drumbeat of cyber 
competition in peacetime. In a crisis, the potential for misinterpretation of a 
cyber operation to trigger escalation may rise. 

This forecast rests on two core assumptions that must be addressed at the 
outset. These are certainly debatable but the aim is to analyze their 
implications should they hold, not assess how likely they are to do so. 

The first is that machine learning could plausibly deliver on the promise of 
sophisticated, automated cyber defenses at scale. That is, the significant 
technical and practical hurdles (e.g., demands for high quality data and 
computing power, as well as organizational challenges to implementation) 
will not prove insurmountable at least for top-tier actors such as China and 
the United States. This study begins with a survey of applications in various 
stages of development to demonstrate their plausibility. But it makes no 
attempt to assess the current state of play with deployed machine learning 
cybersecurity applications or the likelihood of realizing them in the near 
term.*  

 
* For a more thorough survey of existing applications and near-term prospects for machine 
learning in cybersecurity see Micah Musser and Ashton Garriott, “Machine Learning and 
Cybersecurity: Hype and Reality” (Center for Security and Emerging Technology, 
forthcoming). 
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The second assumption is that insights from existing research on machine 
learning attack vectors will hold at least for the prevailing machine learning 
methods and applications discussed here. This study draws extensively on 
research demonstrating the attack vectors targeting machine learning and 
what these vectors reveal about the potential limits of the robustness of 
machine learning systems. It makes no assumptions about yet unseen 
innovations in machine learning techniques or offensive or defensive 
measures that might fundamentally change the trajectory.  

This study begins with a brief overview of machine learning applications for 
cybersecurity, including their prospective defensive benefits and inherent 
flaws. It then examines two propositions for how these technical changes to 
the cybersecurity landscape may, in turn, shape offensive and defensive 
cyber operations. Specifically, machine learning attack vectors could create 
predicaments that incentivize intrusions into adversaries’ networks, whether to 
create offensive options or shore up defenses. This study continues on to 
explore how the combination of these two propositions could fuel the steady 
intensification of cyber competition and increase the risks of misperception 
and escalation in cyber engagements. 
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Promise and Pitfalls of Artificial Intelligence for 
Cybersecurity 

Machine learning lies at the core of the emerging and maturing cybersecurity 
applications discussed throughout this paper. Described as an approach to, 
or subfield of, AI, machine learning has fueled recent milestones in tasks 
ranging from image recognition to speech generation to autonomous driving.  

Machine learning systems essentially adapt themselves to solve a given 
problem.5 This process often starts with a blank slate in the form of a neural 
network. The system’s developers feed a dataset to the neural network and an 
algorithm shapes the network’s structure to adapt to the patterns within this 
data. For example, a system for analyzing malware will learn to accurately 
identify a file as “malware” or “benign” and associate each classification with 
particular patterns. Eventually the network develops a generalized model of 
what malware “looks like.”  

High quality training data, effective training algorithms, and substantial 
computing power comprise the critical inputs to this process. The resulting 
machine learning model, ideally, detects not only known malware but yet 
unseen variants. Advancements in machine learning techniques reduce the 
need for human experts to structure data.* Rather than relying on an expert to 
tell the model what key features of malware to look for, the model discovers 
on its own how to classify malware. As a result, it may find ways of identifying 
malware more effective at coping with attackers’ attempts at obfuscation, 
such as “metamorphic” malware that rewrites parts of its code as it 
propagates.6 

Intrusion detection—finding an adversary’s illicit presence in a friendly 
computer network—may benefit similarly from machine learning. Existing 
intrusion detection systems already look for red flags, such as a computer 
becoming active in the middle of the night or a user attempting to access files 
unrelated to their work. Yet defenders struggle to sort through the vast data 
generated by network activity in large enterprises, allowing attackers to hide 
in the noise. Machine learning systems can turn this data into a major 

 
* Deep learning architectures are particularly promising in this respect. For example, one 
approach translates a piece of malware into an image by converting code to pixels in order 
to utilize advances in deep learning-based image classification as a means of classifying the 
underlying code as benign or malicious. See Daniel Gibert, Carles Mateu, and Jordi Planes, 
“The Rise of Machine Learning for Detection and Classification of Malware: Research 
Developments, Trends and Challenges,” Journal of Network and Computer Applications 
153 (March 1, 2020): 102526. 
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advantage. By fusing information from a wider and more diverse range of 
sensors throughout the environment, they create a baseline of normal network 
activity against which even slight deviations can be detected.7 

AI and machine learning have quickly become buzzwords in the 
cybersecurity industry. This makes it difficult to assess the extent to which these 
capabilities are actually relied upon or are invoked for marketing purposes. 
Cybersecurity vendors commonly claim to leverage machine learning.* For 
example, as CrowdStrike defends its customers’ devices and networks, it 
rakes in data on around 250 billion events daily and feeds the data to 
machine learning models to predict new kinds of attacks.8 Darktrace states 
that it employs multiple machine learing methods in its “Enterprise Immune 
System,” empowering systems that can automatically mitigate attacks.9 
Machine learning has also been harnessed to test software for vulnerabilities, 
detect spam and spear-phishing attacks, and identify suspicious behavior and 
insider threats.10 In general, machine learning systems appear to be 
deployed mainly for relatively narrow tasks in support of human network 
defenders.11 

Traditional machine learning methods relying on large training datasets may 
not suffice for a system that performs more complex tasks requiring sequences 
of actions, each dependent upon the outcome of the last. Such a system 
needs to learn more like a human—through experimentation and trial-and-
error. This is the essence of reinforcement learning. Instead of being fed 
training data, a reinforcement learning agent interacts with a simulated 
environment and is rewarded for action that advances its objective. It 
gradually learns sets of moves, or “policies,” to guide its action. The process 
can yield stunning results, such as the victory by AlphaGo, a reinforcement 
learning system developed by DeepMind, over Lee Sedol, the world 
champion in the incredibly complex game of Go.12 

If reinforcement learning can master chess and Go, it might unlock future 
cyber defenses capable of discovering and automatically executing moves 
and strategies in the “game” against cyber attackers. Cyber defenders have 
a home field advantage.13 They can change the configuration of networks to 
interfere with an attacker or deploy decoy systems such as “honeypots” that 
lure attackers in and lead them to reveal capabilities. However, setting up 

 
* According to one survey of U.S., UK, and German businesses 82 percent of respondents 
stated their company employed a cybersecurity product utilizing machine learning in some 
form. See Ondrej Kubovič, “Machine-Learning Era in Cybersecurity: A Step Toward a Safer 
World or the Brink of Chaos?” ESET, February 2019, 
https://www.eset.com/fileadmin/ESET/US/download/ESETus-Machine-Learning-Era-in-
Cybersecurity-Whitepaper-WEB.pdf. 
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honeypots and reconfiguring networks are technically demanding tasks and, 
to be effective, require the ability to anticipate an attacker’s moves and adapt 
on the fly.14 While still largely confined to academic research, and thus more 
speculative, pioneering applications of reinforcement learning may produce 
systems capable of these feats.15 Reinforcement learning agents could learn 
optimal strategies for reconfiguring networks and mitigating attacks, rapidly 
analyze an attacker’s moves and select and execute actions, such as isolating 
or patching infected nodes and deploying honeypots. At a minimum, they 
could present attackers with a constantly moving target, introducing 
uncertainty and increasing the complexity required for offensive operations.16  

Machine learning could plausibly deliver on the promise of cyber defenses 
that adapt to novel threats and automatically engage attackers. These 
potentially game-changing applications are the focus of this study, even 
though the most significant near-term gains for cybersecurity may be found in 
automating the more “mundane” aspects of cybersecurity. The more 
speculative capabilities may not be realized in the near term, but given their 
potential to transform cyber operations it is worth exploring their implications. 

Security vulnerabilities of machine learning 

As promising as they are, most machine learning cyber capabilities have yet 
to face the most important test: systematic attempts by attackers to break them 
once deployed. Machine learning can fail catastrophically under certain 
conditions.17 Evidence for this includes “adversarial examples”: manipulated 
inputs (often images that have been subtly altered) created by researchers to 
trick machine learning models. Seemingly imperceptible changes to an image 
of a turtle can cause a model that otherwise classifies it with perfect accuracy 
to mistake it for a rifle.18 Similar adversarial techniques can cause 
reinforcement learning systems to malfunction.19 

Adversarial examples reveal a problem inherent to machine learning, not just 
deficiencies in specific systems. Every model rests on assumptions about the 
data to make decisions—assumptions, for instance, about what malware 
“looks like.” If an input violates those assumptions it will fool the model (and 
often a successful deception fools other models trained for the same task).20 
Flawed training methods or data can create vulnerabilities. But models can 
also become vulnerable when the conditions in which they are deployed 
change in ways that violate assumptions learned in training. The model’s 
predictions will no longer be accurate—a problem referred to as “concept 
drift.”21 Even slight deviations from training conditions can dramatically 
degrade performance. 
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This poses a constant problem for machine learning applications in dynamic, 
adversarial contexts like cybersecurity.22 For machine learning cyber 
defenses to be viable, they may have to learn and evolve not just during 
training, but in deployment.23 Systems will have to keep up with a constantly 
changing cybersecurity landscape. For instance, an intrusion detection system 
modeling “normal” network activity must constantly revise this model as 
legitimate and malicious activity changes. The system might generate new 
training data by observing the behavior of devices connected to the network, 
using this data to continuously update and refine its model to better predict 
future behavior.  

Innovative machine learning techniques aim to create systems capable of 
better contending with adaptive adversaries in dynamic environments. These 
techniques harness competition to drive evolution. For instance, Kelly et al. 
co-evolve defenses that automatically reconfigure networks to catch the 
attackers with offensive agents seeking to evade detection.24 Developers may 
pit a reinforcement learning agent against an adversarial agent whose 
objective is to thwart it.25 These methods attempt to simulate an “arms race” 
between attackers and defenders to produce models that better anticipate 
and preempt attacker moves in the real world.26  

All of this sets the stage for a potential transformation in the cat-and-mouse 
game between cyber attackers and defenders. The future cybersecurity 
playing field may feature defenses that evolve automatically through 
engagements, but such defenses inevitably create new attack vectors that are 
difficult to safeguard. The next two sections explore how attackers and 
defenders alike might adapt to these changing technical conditions, setting 
the foundation to examine the geopolitical implications that follow. 
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The Imperatives of Offense 

If improved machine learning defenses offer significant benefits to defenders, 
they will introduce significant new hurdles into the planning and execution of 
offensive cyber operations. Offensive operations often require careful 
planning and preparation of the target environment. The presence of 
sophisticated machine learning defenses may force attackers to shift their 
efforts toward targeting the underlying machine learning models themselves. 
But hacking machine learning presents its own unique set of problems. The 
core challenge for attackers will be figuring out how to reliably manipulate or 
circumvent these systems. 

Attacking machine learning 

Attackers tend to follow the path of least resistance. If possible, they will try to 
avoid machine learning defenses entirely, including by targeting “traditional” 
attack vectors, such as acquiring credentials via spear-phishing. Avoidance, 
however, may not always be an option. An attacker may attempt to evade 
the defensive system by exploiting a weakness in the model. Researchers at 
security firm Skylight Cyber demonstrated how to do so against Cylance’s 
leading machine learning-based antivirus product.27 Using publicly 
accessible information, they reverse-engineered the model to discover how it 
classified files. In the process, they discovered a bias in the model; it strongly 
associated certain sequences of characters with benign files. A file that 
otherwise appeared highly suspicious would still be classified as benign if it 
contained one of the character sequences. The Skylight researchers 
discovered, in their words, a “universal bypass”—characters that they could 
attach to almost any piece of malware to disguise it as a benign file.* The 
researchers found that applying their bypass to a sample of 384 malicious 
files resulted in the machine learning system classifying 84 percent as 
“benign,” often with high confidence.28  

Attackers will not always be so lucky as to discover a bypass as readily 
exploitable as in the Cylance case. They could sabotage a model to similar 
effect. Injecting bad samples into a training dataset (e.g. malware labeled as 
“benign”) can “poison” a model. Even an unsophisticated poisoning attack 
could dramatically reduce the model’s performance.29 More insidiously, an 

 
* Cylance disputed the characterization as a “universal bypass” and claimed to have fixed 
the flaw shortly after being made aware by Skylight. See “Resolution for BlackBerry Cylance 
Bypass,” BlackBerry ThreatVector Blog, July 21, 2019, 
https://blogs.blackberry.com/en/2019/07/resolution-for-blackberry-cylance-bypass. 
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attacker could poison a model so that it reacts to specific inputs in a way 
favorable to the attacker—inserting a “backdoor” into the model. In one 
demonstration, researchers created a “watermark” in the form of a specific 
set of features in a file that functioned similar to the bypass discovered by 
Skylight. By tampering with just one percent of the training data, they could 
induce a model to misclassify malicious files containing the watermark as 
benign with a 97 percent success rate.30  

While these examples describe attacks on classification systems, 
reinforcement learning agents engaged in more complex tasks have similarly 
proven susceptible to evasion and sabotage.31 For example, an attacker 
could poison a defensive system that automatically reconfigures networks so 
that it responds poorly in specific circumstances; the attacker might trick the 
system into connecting an infected node to others in the network, rather than 
isolating it.32 

The attacker’s predicament 

The feasibility of evading or poisoning a machine learning system will 
inevitably depend on the context. It’s one thing to demonstrate attacks on 
machine learning in experimental settings, but it’s another to execute them in 
the real world against a competent defender. In the Cylance case, the 
attackers benefited from insights into the inner workings of the model. States 
seeking to create and sustain offensive options may face strategic targets that 
are not so widely exposed. The difficulty of conducting attacks on machine 
learning systems under realistic constraints may pressure states to intrude into 
adversaries’ networks to begin laying the groundwork for attacks as early as 
possible. This pressure stems from the necessity intrusions play in enabling the 
kinds of attacks described above:  

(1) Acquiring information to craft more reliable and effective evasion attacks 
against machine learning systems: As Goodfellow et al. observe, the greater 
the attacker’s “box knowledge”—knowledge of the target model parameters, 
architecture, training data and methods—the easier it is to construct an attack 
that defeats the system.33  Under “white box” conditions, where the attacker 
has complete knowledge, crafting an attack is a relatively straightforward 
matter of optimizing the features of malware (or other inputs) to exploit the 
model’s assumptions.*  

 
* Researchers have naturally found greater success evading antivirus systems and attacking 
reinforcement learning policies with white-box attacks than with black-box attacks. See, for 
instance, Hyrum S. Anderson et al., “Learning to Evade Static PE Machine Learning Malware 
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“Black box” attacks, where the attacker has little to no knowledge of the 
target model, are possible, but require more guesswork. The attacker may 
engineer an attack against a substitute for the target model in the hopes that if 
it fools the substitute, it will fool the target. But this depends on how closely the 
substitute matches the target.34 Demonstrations of black-box attacks often 
leverage publicly available details or the ability to repeatedly probe a target 
model in order to derive information on how it works. An attacker might buy a 
commercial service to gain insights into a model, allowing greater flexibility to 
craft attacks. In top-tier cyber competition, however, an attacker may not 
enjoy these advantages. If the target model is not widely exposed, attempts to 
probe it may tip off the defender. And gaining information on some types of 
defenses, like those that reconfigure networks, would require intruding into 
the network. Moreover, future security measures may prevent deployed 
machine learning systems from “leaking” useful information to an attacker 
attempting to probe them.35 The best way to acquire box knowledge, then, 
may be to gain access to a training environment and steal training data or 
even a trained model. 

(2) Compromising systems to enable future exploitation: It is possible to 
undermine a deployed model, for instance interacting with an intrusion 
detection system to “normalize” an intruder’s presence to it.36 But competent 
defenders will be alert to the possibility. The development process may 
present a softer target.37 Rather than a model developed from scratch, many 
applications take existing pre-trained models and tailor them for specific tasks 
through additional training and fine-tuning in a process known as transfer 
learning. A backdoor inserted into the pre-trained model can make its way 
into subsequent models derived from it.38 This opens up new attack vectors. 
For example, compromising an open source project, code repository, or a 
commercial contractor assisting with the development of cybersecurity 
applications may allow an attacker to insert vulnerabilities deep into systems 
that make their way into more tightly-controlled training environments. 
Targeting the development process has the added benefit of scalability: 
inserting a backdoor into one model may facilitate access to a wide swath of 
subsequent targets. A transfer learning service supporting diverse 
commercial, military, or other national security-relevant applications would 
be a tempting target.  
  

 
Models via Reinforcement Learning,” arXiv [cs.CR] (January 26, 2018), arXiv, 
http://arxiv.org/abs/1801.08917; Huang et al., “Adversarial Attacks on Neural Network 
Policies.” 
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The Imperatives of Defense 

As attackers adapt to the deployment of machine learning, the success or 
failure of cyber defenses may hinge on the security of machine learning 
models against deception and manipulation. Yet it has proven difficult to 
create machine learning systems that are truly robust—that is, systems that can 
contend with attackers that adapt their tactics to try and defeat them. 
Innovative defenses against the kinds of attacks described above have 
emerged, but are routinely broken. Some experts question whether progress 
toward truly robust machine learning has been illusory.39 The core challenge 
for defenders may be safeguarding systems with inherent flaws baked in. 

The perpetual problem of machine learning robustness 

When a vulnerability is discovered, a machine learning model cannot simply 
be patched like traditional software. Instead, the developer must retrain the 
model using adversarial examples or certain training procedures designed to 
make the model more robust to a particular set of deceptive inputs. However, 
adjusting the model may simultaneously make it more robust to one set of 
deceptions but more susceptible to others. Two prominent machine learning 
security experts, Ian Goodfellow and Nicolas Papernot, thus characterize 
existing defensive measures as “playing a game of whack-a-mole: they close 
some vulnerabilities, but leave others open.”40 Such were the findings of 
Tramer et al., who systematically defeated 13 defenses shown to be effective 
against adaptive attackers.41 A similar phenomenon has been observed with 
reinforcement learning agents; rather than becoming generally robust, those 
trained against an adaptive adversary in simulated games tend to “overfit” to 
the adversary. In other words, their adaptations to deal with the regular 
opponent can leave them vulnerable to a novel attack.42 

The ease with which defenses are broken may simply reflect the nascent state 
of machine learning security. But it suggests a more concerning possibility: no 
defense will be robust to all possible attacks. As David Brumley puts it: “for 
any ML algorithm, an adversary can likely create [an attack] that violates 
assumptions and therefore the ML algorithm performs poorly.”43 Unlike 
software security, which is, at least in theory, a “linear” process of 
improvement as the developer tests, patches, and repeats, machine learning 
may present a perpetual security problem. The system can be hardened to 
any known attack but may always be vulnerable to a possible novel attack. 

These observations raise two questions regarding the potential limits on 
machine learning robustness: 
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First, how much of a problem do machine learning’s flaws pose for the 
defender? With sufficiently comprehensive training data to accurately model 
threats, perhaps the risk of a novel attack defeating the system would be 
negligible. However, cybersecurity presents a uniquely difficult deployment 
context: Threats continuously evolve, so a deployed system must constantly 
take in new data to adapt. But if instead of becoming generally robust, 
machine learning defenses are just playing whack-a-mole, then there may 
always be an attack that breaks them. Testing systems to try and discover 
every flaw may prove futile because of the vast range of possible moves the 
attacker could make to deceive the machine learning model.44 And attackers 
may be in a position where they could feasibly discover flaws by repeatedly 
probing defenses, unlike other domains where engagements between 
attackers and defenders might be episodic (e.g. autonomous weapon systems 
in kinetic warfare).* 

Second, is this problem endemic to machine learning or a limitation of 
prevailing methods? It is at least possible that the limits on robustness prove 
persistent in contexts where systems have to evolve with adaptive adversaries. 
The process of neural network evolution drives toward efficient solutions to 
problems, not necessarily solutions that are robust against adaptive 
adversaries. In the Cylance case, the system discovered an efficient way to 
classify the whitelisted files—but one that attackers could exploit. This may not 
matter in some contexts, but systems forced to co-evolve with adaptive 
adversaries may adapt in ways that inevitably create vulnerabilities. 
Colbaugh and Glass thus argue that systems that co-evolve with adaptive 
adversaries become “robust yet fragile.”45 They become effective at dealing 
with recurrent threats but, in adapting to do so, develop “hidden failure 
modes” that a novel attack could trigger. Consequently, they argue, 
prospective mitigations like “ensemble” models, which combine multiple 
algorithms in a model to minimize the consequences of any one failing, may 
not yield truly robust systems because they do not resolve the underlying 
problem.  

To be clear, it is too early to draw definitive conclusions. The point is that 
applying machine learning to cybersecurity presents a set of intertwined 
challenges. At a minimum, defenders will have to ensure their systems keep 
up with constantly evolving threats. But the same capabilities that enable 

 
* Sven Krasser, chief scientist and vice president of CrowdStrike, observes that even with a 
detection system with a 99 percent success rate, an attacker can defeat it with over a 99 
percent chance of success with 500 tries. See National Academies of Sciences, Engineering, 
and Medicine, Implications of Artificial Intelligence for Cybersecurity: Proceedings of a 
Workshop (Washington, DC: The National Academies Press, 2019), page 43. 
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systems to adapt may put them at risk of being “mistrained” in ways that leave 
them vulnerable to targeted attacks. And if it is possible that there are inherent 
limits on robustness, defenders could be forced to make tradeoffs between 
different threats.  

The defender’s predicament 

Machine learning may solve some long-standing problems for defenders 
while creating new ones. In many contexts, defenses sufficient to deal with 
that vast majority of malicious threats will be good enough. States, however, 
need to ensure the viability of defenses against not just general malicious 
activity, but specific pacing threats (e.g. China or Russia in the United States’ 
case). The possibility of an adversary exploiting a hidden failure mode in a 
defense may become an acute concern. Yet states may have limited options 
for ensuring the robustness of defenses, each of which may necessitate 
intruding into their adversaries’ (or third parties’) networks before an attack 
occurs: 

(1) Overcoming the limitations of training, testing and verification: Generally 
speaking, knowledge of adversaries’ capabilities enables proper threat 
modeling and hardening of defenses. Machine learning could amplify the 
benefits of insights into the evolving threat landscape—and the potential costs 
of falling behind the latest trends. The better the training data on attacks are, 
the better the defensive model against those attacks will be. Historical data 
will diminish in value as adversaries change tactics and the landscape shifts, 
creating a constant incentive to continually gather information on evolving 
adversary tactics. Moreover, these incentives could be even stronger if there 
are inherent limits on the robustness of machine learning defenses. The 
defender may have to choose a subset of potential attacks to prioritize when 
training a defense within a vast range of possible attacks.46 Verifying the 
system’s robustness against a specific adversary might depend on 
anticipating their likely attack methodology. Intruding into the adversary’s 
networks (or a third-party network that adversary may be operating inside) to 
gain advanced warning of their capabilities could thus guide the defender’s 
efforts and make this problem far more tractable.  

(2) Enabling countermeasures to a specific adversary’s attacks: A defender 
can painstakingly try to harden a defense against the vast range of possible 
attacks. But a much simpler option may exist: peer into the attacker’s own 
networks to gain the information necessary to mitigate an attack through 
traditional cyber defense. This could include discovering and patching a 
software vulnerability used by the attacker or creating a signature of malware 
in order to detect it, essentially “inoculating” the defense. This would have the 
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added benefit of scalability; a defender could inoculate defenses deployed in 
a range of settings rather than having to orchestrate their retraining.* Rapidly 
inoculating defenses might be especially necessary in a period of heightened 
tensions when an attack by an adversary is anticipated. 

(3) Leapfrogging the innovations of others: Unlike experimental settings that 
typically feature one attacker and one defender, cyberspace features many 
actors who learn from and appropriate others’ tools and techniques. With 
cybersecurity in general, a state can expect its adversaries to adapt and 
improve their capabilities against other states’ defenses. The fact that attacks 
tend to transfer from one machine learning model to another suggests that 
observing successful attacks against another’s defenses can yield specific, 
valuable information on how to improve one’s own. A state might even probe 
another actor’s defenses to try and extract the model and copy it for its own 
defense. 
  

 
* U.S. Cyber Command’s “malware inoculation initiative,” which publishes information 
discovered on adversaries’ capabilities to improve private sector defenses, demonstrates the 
potential scalability of this approach. Erica Borghard and Shawn Lonergan, “U.S. Cyber 
Command’s Malware Inoculation: Linking Offense and Defense in Cyberspace,” Net Politics, 
April 22, 2020, https://www.cfr.org/blog/us-cyber-commands-malware-inoculation-
linking-offense-and-defense-cyberspace. 
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Artificial Intelligence and Cyber Stability 

Artificial intelligence could transform cyber operations at a time when cyber 
competition among states is heating up. This analysis has focused on the 
potential operational imperatives machine learning could create, but these 
operations would not play out in a vacuum. They would occur within this 
strategic context, in which states may be both “attackers” and “defenders” in 
a constant struggle for advantage. The stakes are no less than protecting core 
national interests and potentially crucial military advantages in a conflict. 
Cyber competition may drive states to hack machine learning defenses. 
Could machine learning, in turn, destabilize cyber competition? 

The escalation dynamics of cyber engagements remain a subject of 
contention. Real-world cyber operations have rarely provoked forceful 
responses.47 This has led some scholars to propose that inherent 
characteristics of cyber capabilities or cyber competition limit the potential for 
escalation. Others are less sanguine. Jason Healey and Robert Jervis argue 
that cyber competition has steadily intensified as the scope and scale of cyber 
operations have expanded over three decades.48 The forces containing this 
competition to manageable thresholds may not hold indefinitely. Moreover, 
they argue that even if cyber operations can be stabilizing in some 
circumstances, in a crisis their characteristics could accelerate the path to 
conflict. 

Cyber competition already has the ingredients needed for escalation to real-
world violence, even if these ingredients have yet to come together in the right 
conditions. The aim here is simply to show how machine learning could 
potentially amplify these risks. This follows two of the potential escalation 
pathways Healey and Jervis identify. The first concerns the factors fueling the 
steady intensification of cyber competition, which could eventually cross a 
threshold triggering a crisis. The second concerns the characteristics of cyber 
operations that may pressure states to launch attacks in a crisis. 

(1) Machine learning could fuel the intensification of cyber competition. 

Even as states’ cyber operations have become more aggressive in some 
respects, they have largely remained well below the threshold likely to trigger 
retaliation. The vast majority consist of acts of espionage and subversion in 
the “gray zone” between war and peace. Some attribute this apparent 
stability to dynamics governing cyber competition below the use of force that 
are inherently self-limiting.49 But Healey and Jervis argue that this stability 
may be tenuous. In some conditions, cyber competition leads to “negative 
feedback loops” that diffuse tensions. In others, it can lead to “positive 
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feedback loops,” whereby cyber operations by one state incite operations by 
another.50 Positive feedback can occur when cyber operations generate fears 
of insecurity. A state may intrude into another’s networks simply to maintain 
situational awareness or to secure its own networks against the target’s 
offensive capabilities. But because the same intrusion for espionage could 
pave the way to launch an attack, the target of the intrusion may view this as 
offensive and respond by engaging in their own counter intrusions.* 

How might machine learning change these dynamics? The above analysis of 
offensive and defensive imperatives suggests the potential to amplify positive 
feedback loops in three ways: 

First, machine learning may increase the perceived salience of informational 
advantages over an adversary and the fear of falling behind. Offensive 
operations targeting machine learning attack vectors may have to be tailored 
to the precise defensive configuration.† Defending against such attacks may 
require the ability to anticipate the particular deception created by the 
attacker. The resulting strategic dynamic may resemble the game of poker: 
Your best move depends on what your opponent has in their hand. Whatever 
can be done in advance to figure out the opponent’s hand—or “stack the 
deck”—may prove tempting.  

Second, machine learning may incentivize states to conduct intrusions into 
adversaries’ networks even earlier in anticipation of future threats. Whether 
attacking machine learning systems or defending against such attacks, the 
options with the greatest chance of success may also require the earliest 
action. Reaching an isolated target may necessitate sabotaging a machine 
learning defense before it is deployed if a black-box attack would be 
infeasible. Similarly, hardening a defense against an attack may require 
gaining information on an attacker’s capabilities well before they are 
launched. States tend to hedge against uncertainties. They may be forced to 
make decisions to take action in the present based on possible future 

 
* This dynamic, whereby one state’s actions to secure itself create fear in another, raising the 
potential for misinterpretation and escalation, is similar to the political science concept of the 
security dilemma. For an overview of the security dilemma and its application to 
cybersecurity, see Robert Jervis, “Cooperation Under the Security Dilemma,” World Politics 
30, no. 2 (1978): 167–214; Ben Buchanan, The Cybersecurity Dilemma (New York, NY: 
Oxford University Press, 2016).  

† Notably, in their effort to defeat proposed defenses against adversarial examples, Tramer 
et al. found that “no single strategy would have been sufficient for all defenses. This 
underlines the crucial fact that adaptive attacks cannot be automated and always require 
appropriate tuning to a given defense.” Tramer et al., “On Adaptive Attacks to Adversarial 
Example Defenses.” 
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offensive or defensive needs. The result may be to lower the threshold of 
perceived threat sufficient to motivate such action.  

Third, machine learning may further blur the line between offensive and 
defensive cyber operations. If merely interacting with a defensive system 
could extract information needed to engineer an attack to defeat it, states 
may be prone to view any interaction as possible preparation for an attack. 
Similarly, a state may gain access to a training environment to copy a 
defensive model, but the target may fear the model has been reverse-
engineered and fatally compromised, enabling an attack.  

In short, states may perceive that the stakes of gaining an edge over 
adversaries are rising, requiring even more proactive efforts in anticipation of 
future needs, while simultaneously making the same efforts by adversaries 
seem even more threatening. In the right conditions, positive feedback loops 
may become more likely to cause an engagement to cross a threshold 
triggering a crisis. More predictably, these dynamics might motivate risky or 
destabilizing cyber operations by states—particularly those seeking 
asymmetric advantages and willing to tolerate collateral damage. Several 
concerning scenarios stand out: 

● Systemic compromises: Contractors or open source projects may 
present opportunities to insert backdoors into models that make their 
way into harder to reach targets. The danger of such operations is 
that a systemic compromise could leave a wide swath of civilian and 
governmental applications vulnerable. Malware designed to exploit 
the backdoor could inadvertently propagate to other systems. As with 
any backdoor inserted into a product, there is no guarantee another 
malicious actor could not discover and exploit it.  

● Poisoning the waters: A cruder tactic than inserting a backdoor would 
simply be an indiscriminate attempt to degrade cybersecurity 
applications. An attacker with little regard for collateral damage 
might flood a malware repository with tainted samples designed to 
mistrain machine learning systems relying on the data.  

● Reckless operations: States may be tempted to accept certain 
operational risks to circumvent machine learning defenses. For 
instance, an attacker may employ capabilities with greater autonomy 
to avoid reliance on external command and control servers, which 
would risk detection.51 Absent human control, such capabilities might 
carry greater risk of unintended impacts that spread beyond the 
target network. An attacker might also sabotage a defense to create 
an offensive option that unintentionally exposes the targeted network 
to other attackers. Sabotaging the systems that protect an adversary’s 
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critical infrastructure, for instance, might backfire catastrophically if it 
creates an opportunity for a third party to launch an attack and 
trigger a crisis. 

● Attacks on trust: An attacker might not need to break a machine 
learning defense if they can undermine the defender’s confidence in 
it. A case alleged against the cybersecurity vendor Kaspersky 
illustrates the possibility. In 2015, the company was accused of 
uploading fake malware samples to VirusTotal, an open source 
service that aggregates information from cybersecurity vendors to 
improve collective defenses. The fake samples were designed to 
cause competing antivirus systems to flag legitimate files, creating 
problems for clients and potentially hurting their brands.52 
Manipulating a machine learning system to trigger false positives 
could similarly undermine confidence in the model. 

(2) Machine learning could exacerbate the characteristics of cyber 
operations that undermine crisis stability. 

In some cases, cyber operations might help avoid a crisis by diffusing 
tensions.* However, if a crisis breaks out, cyber capabilities create pressures 
that could accelerate the path to conflict. Healey and Jervis note the 
widespread perception that cyber capabilities have maximal effect when the 
attacker has the benefits of surprise and initiative.53 If conflict appears 
imminent, such first-mover advantages might tempt states to launch 
preemptive cyberattacks against command, control, and communications 
capabilities to degrade or disable an adversary’s military forces. Short of 
actually launching an attack, states would have strong incentives to begin 
preparations to do so by intruding into their opponent’s networks.  

The inherent ambiguity of cyber intrusions creates a recipe for misperception 
in such a context. Intrusions for espionage purposes may appear 
indistinguishable from those laying the groundwork for attacks, or 
“operational preparation of the environment” (OPE). As Buchanan and 
Cunningham argue, this creates the potential for escalation resulting from a 

 
* Cyber operations could act as a “pressure valve” by creating options to respond to 
provocations that are potentially less escalatory than kinetic force both in their direct impacts 
and impacts on perceptions. See Benjamin Jensen and Brandon Valeriano, “What do We 
Know About Cyber Escalation? Observations from Simulations and Surveys” (Atlantic 
Council, November 2019), https://www.atlanticcouncil.org/wp-
content/uploads/2019/11/What_do_we_know_about_cyber_escalation_.pdf; Sarah 
Kreps and Jacquelyn Schneider, “Escalation Firebreaks in the Cyber, Conventional, and 
Nuclear Domains: Moving Beyond Effects-Based Logics,” Journal of Cybersecurity 5, no. 1 
(January 1, 2019): 1–11, https://doi.org/10.1093/cybsec/tyz007. 
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miscalculated response to an intrusion.54 One side might discover an intrusion 
in a crisis—even one that occurred months before the crisis began—and, 
misinterpreting it as an imminent attack, may face sudden pressure to launch 
a counterattack. 

Here again, the potential offensive and defensive imperatives created by 
machine learning could exacerbate these risks: 

First, states may feel even greater pressure to gain advantages through 
intrusions early in a crisis. The time needed to engineer an attack under black-
box conditions, or retrain a defense to ensure robustness against a possible 
imminent attack by an adversary, may translate to increased pressure to try 
and quickly gain information on an adversary’s capabilities if the state does 
not already possess it.*  

Second, the indistinguishability of espionage from OPE may be even more 
problematic. A state that detects an intrusion or a compromised training 
process might have no way to rapidly discern whether the attacker has 
discovered a flaw that would defeat the system or to evaluate the robustness 
of the defense. If defenses are believed to be fragile in the face of novel 
attacks this could become an acute source of anxiety. Faced with fewer 
options to rule out worst-case scenarios, the state may be more likely to 
escalate in response.  

Third, machine learning could create additional sources of uncertainty that 
induce potential “use it or lose it” dilemmas. Changes in the target 
environment can already throw off meticulously-planned offensive 
operations. The shelf-life of an offensive operation might be even shorter if it 
must be tailored to the precise configuration of machine learning defenses 
that could evolve over time. If a state has prepared such capabilities, the 
temptation in a crisis may be to use them rather than risk them becoming 
obsolete. The sudden discovery of a critical flaw in a defensive machine 
learning system with no easy remedy might similarly force the defender to 
contemplate whether to preempt a possible attack. 

The threat to crisis stability arises from this unique combination of uncertainties 
and anxieties at the technical and strategic levels. Machine learning seems 

 
* If conducting black-box attacks on machine learning systems proves time-consuming, this 
might actually be stabilizing in some circumstances: as Borghard and Lonergan argue, the 
time needed to develop offensive options makes them a less effective tool of escalation in 
response to an attack–a state cannot simply conjure up cyber options for immediate 
retaliation. See Erica Borghard and Shawn Lonergan, “Cyber Operations as Imperfect Tools 
of Escalation,” Strategic Studies Quarterly (Fall 2019): 122-145. 
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capable of compounding these and, in the heat of a crisis, increasing the 
potential for serious misperception and miscalculation.  

Mitigating scenarios 

As stated at the outset, this study explores a possible worst-case scenario for 
the future of AI-cyber capabilities. The threat to stability stems from the 
potential for machine learning to create offensive and defensive imperatives 
that incentivize states to intrude into their adversaries’ networks. But it is worth 
briefly revisiting the possibility that machine learning could evolve in ways 
that fundamentally change these imperatives. Describing the current state of 
the art, Bruce Schneier compares machine learning security to the field of 
cryptography in the 1990s: “Attacks come easy, and defensive techniques 
are regularly broken soon after they’re made public.”55 The field of 
cryptography, however, matured and encryption is now one of the strongest 
aspects of cybersecurity. Eventually, a more mature science of machine 
learning security may likewise yield systems highly robust without the constant 
threat of becoming vulnerable to targeted attacks.  

However, as this relates to the incentives to intrude into adversaries’ networks, 
it only solves the defensive side of the equation. A machine learning defense 
could be robust to an adversary’s attack even without advanced knowledge 
of their capabilities. On the other hand, attackers may face even greater 
incentives to intrude into target networks early and aggressively. If attackers 
cannot count on discovering ways to defeat a system once it is deployed, 
sabotaging its development or compromising its supply chain may be seen as 
even more necessary offensive options.  

Alternatively, machine learning security may hit a dead end. Systems may 
remain fundamentally vulnerable in dynamic, adversarial conditions. In such 
a scenario, cybersecurity would in all likelihood still benefit from machine 
learning applications as it does now, but not in ways that fundamentally 
change the cat-and-mouse game. In this case, offensive operations may not 
depend on early intrusions any more than in the status quo; attackers would 
likely be able to find ways to defeat defenses that do not depend on 
compromising them well in advance. Defenders, however, might face 
stronger pressure to intrude into adversaries’ networks to try and harden 
potentially fragile systems against their capabilities. The situation for 
defenders could become untenable if attackers benefit from offensive 
applications of machine learning.56 

The point of this cursory analysis is to show that even if the broad trajectory of 
machine learning changes, the potential for destabilization may remain. In 
any event, the present challenges facing machine learning do not appear 
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likely to be resolved soon. To Schneier, machine learning security is at the 
level of maturity of cryptography in the 1990s, but Nicholas Carlini, a 
leading expert on machine learning security, paints an even bleaker picture. 
In a November 2019 presentation, he compared machine learning security 
to cryptography in the 1920s, suggesting that the field has not even 
developed the right metrics to gauge progress toward solving these 
fundamental problems.57 

Implications for policy 

Efforts are underway to understand and address the threats to machine 
learning systems.58 A key takeaway from this study is that deploying machine 
learning for cybersecurity presents a unique set of challenges arising from the 
interaction of technical characteristics and strategic imperatives. These 
challenges must be addressed not only via technical solutions but at the level 
of policy and strategy. Even with the “known-unknowns,” several imperatives 
emerge from this forecast: 

● First, machine learning may present inexorable tradeoffs for cyber 
defense. Machine learning defenses may mitigate some threats while 
introducing new attack vectors. And the ability to adapt to evolving 
threats may put systems at constant risk of becoming vulnerable. 
Decision-makers need basic tools to inform risk-based decisions 
about when and how to employ such systems. This includes 
frameworks and metrics to evaluate systems deployed in crucial 
contexts: e.g., diagnosability or auditability, resilience to poisoning or 
manipulation, and the ability to “fail gracefully” (meaning a model’s 
failure does not cause catastrophic harm to functions dependent upon 
it).59 Decisions and policies, such as those regarding the disclosure of 
machine learning vulnerabilities or the publication of offensive 
security research that might enable attackers, will also have to be 
adapted to the unique characteristics of machine learning.*  

● Second, secure deployment of machine learning depends on 
guarding against attempts by adversaries to broadly compromise or 
degrade the development process. Attacks will not always be direct; 
adversaries may exploit trust in common services, like the 
aforementioned case involving VirusTotal. They may further blur the 

 
* Machine learning security would benefit, for instance, from standards analogous to the 
Common Vulnerability Scoring System, used to evaluate the severity of software 
vulnerabilities and inform decisions about patching. “Common Vulnerability Scoring System 
Version 3.1: User Guide,” Forum of Incident Response and Security Teams, July 2019, 
https://www.first.org/cvss/user-guide. 
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lines between threats such as industrial espionage and strategic 
sabotage. Given the premium on “box knowledge,” threats to the 
confidentiality of public or private data and algorithms should be 
treated as threats to the integrity of applications. Securing machine 
learning demands collective efforts by the government and private 
sector to secure the supply chain, open source development projects, 
data repositories, and other critical inputs.60  

● Third, managing tension and avoiding escalation in the conduct of 
cyber espionage and offensive operations will become even more 
important—especially as the imperative to gain information on 
adversaries’ offensive capabilities and their own machine learning 
defenses increases. Operators need to understand the potential 
impacts of operations against machine learning in sensitive contexts, 
and will need to understand how adversaries will perceive their 
operations. If machine learning could amplify positive feedback loops 
it is worth examining the broader implications for U.S. cyber strategy, 
which is premised on the stabilizing effects of “persistent 
engagement” with adversaries.61 Communication with adversaries to 
clarify strategic intentions will help avoid misinterpretation. Further, 
now is the time to explore forms of mutual restraint regarding the most 
destabilizing offensive activities targeting machine learning. 
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Conclusion 

The pressure to harness artificial intelligence to deal with evolving offensive 
cyber capabilities will only grow. Precisely because machine learning holds 
both promise and peril for cybersecurity, a healthy dose of caution is needed 
when embracing these capabilities. Decisions made now with respect to the 
development and adoption of machine learning could have far-reaching 
consequences for security and stability. Decision-makers must avoid having to 
relearn lessons from cybersecurity in general, including the pitfalls of over-
reliance on defenses at the expense of a more holistic approach to risk 
management. The stakes of securing machine learning will rise as it is 
incorporated into a wide range of functions crucial to economic and national 
security. The incentives to gather intelligence or even sabotage the 
development of defensive systems might weigh just as heavily with other 
strategic areas of application. If this competition is not managed, states may 
head down a path destructive for all. 
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