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Executive Summary 

Automation bias is the tendency for an individual to over-rely on an automated 
system. It can lead to increased risk of accidents, errors, and other adverse outcomes 
when individuals and organizations favor the output or suggestion of the system, even 
in the face of contradictory information. 

Automation bias can endanger the successful use of artificial intelligence by eroding 
the user’s ability to meaningfully control an AI system. As AI systems have 
proliferated, so too have incidents where these systems have failed or erred in various 
ways, and human users have failed to correct or recognize these behaviors. 

This study provides a three-tiered framework to understand automation bias by 
examining the role of users, technical design, and organizations in influencing 
automation bias. It presents case studies on each of these factors, then offers lessons 
learned and corresponding recommendations.   

User Bias: Tesla Case Study 

Factors influencing bias: 
● User’s personal knowledge, experience, and familiarity with a technology.
● User’s degree of trust and confidence in themselves and the system.

Lessons learned from case study: 
● Disparities between user perceptions and system capabilities contribute to

bias and may lead to harm.

Recommendation: 
● Create and maintain qualification standards for user understanding.

User misunderstanding of a system’s capabilities or limitations is a
significant contributor to incidents of harm. Since user understanding is
critical to safe operation, system developers and vendors must invest in
clear communications about their systems.
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Technical Design Bias: Airbus and Boeing Design Philosophies Case Study 

Factors influencing bias:  
● The system’s overall design, user interface, and how it provides user 

feedback. 

Lessons learned from case study:  
● Even with highly trained users such as pilots, systems interfaces contribute 

to automation bias.  
● Different design philosophies have different risks. No single approach is 

necessarily perfect, and all require clear, consistent communication and 
application. 

Recommendation:  
● Value and enforce consistent design and design philosophies that 

account for human factors, especially for systems likely to be upgraded. 
When necessary, justify and make clear any departures from a design 
philosophy to legacy users. Where possible, develop common design 
criteria, standards, and expectations, and consistently communicate them 
(either through organizational policy or industry standard) to reduce the 
risk of confusion and automation bias. 

 
 

Organizational Policies and Procedure Bias: Army Patriot Missile System vs. 
Navy AEGIS Combat System Case Study 

Factors influencing bias:  
● Organizational training, processes, and policies.   

Lessons learned from case study:  
● Organizations can employ the same tools and technologies in very 

different ways based on protocols, operations, doctrine, training, and 
certification. Choices in each of these areas of governance can embed 
automation biases.  

● Organizational efforts to mitigate automation bias can be successful but 
mishaps are still possible, especially when human users are under stress.  
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Recommendation:  
● Where autonomous systems are used by organizations, design and 

regularly review organizational policies appropriate for technical 
capabilities and organizational priorities. Update policies and processes 
as technologies change to best account for new capabilities and mitigate 
novel risks. If there is a mismatch between the goals of the organization 
and policies governing how capabilities are used, automation bias and poor 
outcomes are more likely. 

Across these three case studies, it is clear that “human-in-the-loop” cannot prevent all 
accidents or errors. Properly calibrating technical and human fail-safes for AI, however, 
poses the best chance for mitigating the risks of using AI systems.  
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Introduction 

In contemporary discussions about artificial intelligence, a critical but often overlooked 
aspect is automation bias—the tendency of human users to overly rely on AI systems. 
Left unaddressed, automation bias can and has harmed both AI and autonomous 
system users and innocent bystanders in examples that range from false legal 
accusations to death. Automation bias, therefore, presents a significant challenge in the 
real-world application of AI, particularly in high-stakes contexts such as national 
security and military operations.  

Successful deployment of AI systems relies on a complex interdependence between AI 
systems and the humans responsible for operating them. Addressing automation bias 
is necessary to ensure successful, ethical, and safe AI deployment, especially when the 
consequences of overreliance or misuse are most severe. As societies incorporate AI 
into systems, decision-makers thus need to be prepared to mitigate the risks associated 
with automation bias. 

Automation bias can manifest and be intercepted at the user, technical design, and 
organizational levels. We provide three case studies that explain how factors at each of 
these levels can make automation bias more or less likely, derive lessons learned, and 
highlight possible mitigation strategies to alleviate these complex issues. 
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What Is Automation Bias?  

Automation bias is the tendency for a human user to overly rely on an automated 
system, reflecting a cognitive bias that emerges from the interaction between a human 
and an AI system.

When affected by automation bias, users tend to decrease their vigilance in monitoring 
both the automated system and the task it is performing.1 Instead, they place excessive 
trust in the system’s decision-making capabilities and inappropriately delegate more 
responsibility to the system than it is designed to handle. In severe instances, users 
might favor the system’s recommendations even when presented with contradictory 
evidence. 

Automation bias most often presents in two ways: as an error of omission, when a 
human fails to take action because the automation did not alert them (as discussed in 
the first case study on vehicles); or as an error of commission, when a human follows 
incorrect directions from the automation (as discussed in the case study on the Patriot 
Missile System).2 In this analysis, we also discuss an instance where a bias against the 
automation causes harm (i.e., the third case study on the AEGIS weapons system). 
Automation bias does not always result in catastrophic events, but it increases the 
likelihood of such outcomes. Mitigating automation bias can help to improve human 
oversight, operation, and management of AI systems and thus mitigate some risks 
associated with AI. 

The challenge of automation bias has only grown with the introduction of progressively 
more sophisticated AI-enabled systems and tools across different application areas 
including policing, immigration, social welfare benefits, consumer products, and 
militaries (see Box 1). Hundreds of incidents have occurred where AI, algorithms, and 
autonomous systems were deployed without adequate training for users, clear 
communication about their capabilities and limitations, or policies to guide their use.3  
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While automation bias is a challenging problem, it is a tractable issue that society can 
tackle throughout the AI development and deployment process. The avenues through 
which automation bias can manifest—namely at the user, technical, and organizational 
levels—also represent points of intervention to mitigate automation bias. 

 

 

 

 

 

 

 

 

 

Box 1. Automation Bias and the UK Post Office Scandal  

In a notable case of automation bias, a faulty accounting system employed by the 
UK Post Office led to the wrongful prosecution of 736 UK sub-postmasters for 
embezzlement. Although it did not involve an AI system, automation bias and the 
myth of “infallible systems” played a significant role—users willingly accepted 
system errors despite substantial evidence to the contrary, favoring the unlikely 
case that hundreds of postmasters were involved in theft and fraud.4 As one author 
of an ongoing study into the case highlighted, “This is not a scandal about 
technological failing; it is a scandal about the gross failure of management.”5 
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A Framework for Understanding and Mitigating Automation Bias 

Technology must be fit for purposes, and users must understand those purposes to be 
able to appropriately control systems. Furthermore, knowing when to trust AI and 
when and how to closely monitor AI system outputs is critical to its successful 
deployment. 6 A variety of factors calibrate trust and reliance in the minds of operators, 
and they generally fall into one of three categories (though each category can be 
shaped by the context within which the interaction may occur, such as situations of 
extreme stress or, conversely, fatigue):7  

• factors intrinsic to the human user, such as biases, experience, and confidence in 
using the system;   

• factors inherent to the AI system, such as its failure modes (the specific ways in 
which it might malfunction or underperform) and how it presents and 
communicates information; and, 

• factors shaped by organizational or regulatory rules and norms, mandatory 
procedures, oversight requirements, and deployment policies. 

Organizations implementing AI must avoid myopically focusing only on the technical 
“machine” side to ensure the successful deployment of AI. Management of the human 
aspect of these systems deserves equal consideration, and management strategies 
should be adjusted according to context.  

Recognizing these complexities and potential pitfalls, this paper presents case studies 
for three controllable factors affecting automation bias (user, technical, organizational) 
that correspond to the aforementioned factors that shape the dynamics of human-
machine interaction (see Table 1).  
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Table 1. Factors Affecting Automation Bias 

Factors Description Case Study 

User User’s personal knowledge, 
experience, and familiarity with a 
technology 

User’s degree of trust and 
confidence in themselves and the 
system 

Tesla and driving 
automation 

Technical 
Design 

The system’s overall design, the 
structure of its user interface, and 
how it provides user feedback 

Airbus and Boeing design 
philosophies 

Organization Organizational processes shaping 
AI use and reliance 

U.S. Army’s management 
and operation of the Patriot 
Missile System vs. U.S. 
Navy’s management and 
operation of the AEGIS 
Combat System 

An additional layer of task-specific factors, such as time constraints, task difficulty, 
workload, and stress, can exacerbate or alternatively reduce automation bias.8 These 
factors should be duly considered in the design of the system, as well as training and 
organizational policies, but are beyond the scope of this paper.  
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Case Studies 

Case Study 1: How User Idiosyncrasies Can Lead to Automation Bias 

Individuals bring their personal experiences—and biases—to their interactions with AI 
systems.9 Research shows that greater familiarity and direct experience with self-
driving cars and autonomous vehicle technologies make individuals more likely to 
support autonomous vehicle development and consider them safe to use. Conversely, 
behavioral science research demonstrates that a lack of technological knowledge can 
lead to fear and rejection, while having only a little familiarity with a particular 
technology can result in overconfidence in its capabilities.10 The case of increasingly 
“driverless” cars illustrates how the individual characteristics and experiences of users 
can shape their interactions and automation bias. Furthermore, as the case study on 
Tesla below illuminates, even system improvements designed to mitigate the risks of 
automation bias may have limited effectiveness in the face of a person’s bias. 

Tesla’s Road to Autonomy  

Cars have become increasingly automated over time. Manufacturers and engineers 
have introduced cruise control and a flurry of other advanced driver assistance systems 
(ADAS) aimed at improving driving safety and reducing the likelihood of human error, 
alongside other features such as lane drift systems and blind spot sensors. The U.S. 
National Highway Traffic Safety Administration suggests that full automation has the 
potential to “offer transformative safety opportunities at their maturity,” but caveat that 
these are a future technology.* As they make clear on their website in bolded capital 
letters, cars that perform “all aspects of the driving task while you, as the driver, are 
available to take over driving if requested. . . ARE NOT AVAILABLE ON TODAY’S 
VEHICLES FOR CONSUMER PURCHASE IN THE UNITED STATES.”11 Even if these 

 
* The Society of Automotive Engineers (SAE) (in collaboration with the International Organization for 
Standardization, or ISO) has established six levels of driving automation, from 0 to 5. Level 0, or no 
automation, represents cars without systems such as adaptive cruise control. On the other end of the 
spectrum, Levels 4 and 5 suggest cars that may not even require a steering wheel to be installed. Levels 
1 and 2 include those systems with increasingly competent driver support features like those mentioned 
above. In all of these systems, however, the human is driving, “even if your feet are off the pedals and 
you are not steering.” It is at Level 3, where automation begins to take over, that the line between “self-
driving” and “driverless” becomes fuzzier, with the vehicle relying less on the driver unless the vehicle 
requests their engagement. Levels 4 and 5 never require human intervention. See “SAE Levels of Driving 
Automation™ Refined for Clarity and International Audience,” SAE International Blog, May 3, 2021,  
https://www.sae.org/blog/sae-j3016-update. 
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cars were available, it is important to consider the possibility that while autonomy 
might eliminate certain kinds of accidents or human errors (like distracted driving), it 
has the potential to create new ones (like over-trusting autopilot).12 

Studies suggest that ADAS adoption by drivers is often opportunistic, and simply a 
byproduct of upgrading their vehicles. Drivers learn about the vehicle’s capabilities in an 
ad-hoc manner, sometimes just receiving an over-the-air software update that comes 
with written notes. There are no exams or certifications required for these updates.  

Studies have also shown that where use of an ADAS system is solely experiential, such 
as when a driver adopts an autonomous vehicle without prior training, human misuse 
or misunderstanding of ADAS systems can happen after only a few encounters behind 
the wheel.13 Furthermore, at least one study found that drivers who are exposed to 
more capable automated systems first tended to establish a baseline of trust when 
interacting with other (potentially less capable) automated systems.14 This trust and 
confidence in ADAS vehicles can manifest as distracted driving, to the point of drivers 
ignoring warnings, taking longer to react to emergencies, or taking risks they would not 
take in the absence of automation.15  

Behind the Wheel: Tesla’s Autopilot and the Human Element 

In the weeks leading up to the first fatal U.S. accident involving Tesla’s Autopilot in 
2016, the company’s then-president, Jon McNeill, personally tested the system in a 
Model X. In an email following his test, McNeill praised the system’s seemingly flawless 
performance, admitting, “I got so comfortable under Autopilot that I ended up blowing 
by exits because I was immersed in emails or calls (I know, I know, not a recommended 
use).”16 

Despite marketing that suggests the Tesla Full Self-Driving Capability (FSD) might 
achieve full autonomy without human intervention, these features currently reside 
firmly within the suite of ADAS capabilities.17 Investigations into that first fatal accident 
found that the driver had been watching a movie and had ignored multiple alerts to 
maintain hands on the wheel when the Autopilot failed to distinguish a white trailer 
from a bright sky, leading to a collision that killed the driver.18 Since then, there have 
been a range of incidents involving Tesla’s Autopilot suite of software, which includes 
what is called a “Full Self-Driving Capability.” These incidents led the National Highway 
Traffic Safety Administration (NHTSA) to examine nearly one thousand crashes and 
launch over 40 investigations into accidents in which Autopilot features were reported 
to have been in use.19 In its initial investigations, NHTSA found “at least 13 crashes 
involving one or more fatalities and many more involving serious injuries in which 
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foreseeable driver misuse of the system played an apparent role.”20  Also, among 
NHTSA’s conclusions was that “Autopilot’s design was not sufficient to maintain 
drivers’ engagement.”21 

In response to NHTSA’s investigation and increasing scrutiny, in December 2023 Tesla 
issued a safety recall of two million of its vehicles equipped with the Autosteer 
functionality.22 In its recall announcement, Tesla acknowledged that: 

“In certain circumstances when Autosteer is engaged, the prominence and scope 
of the feature’s controls may not be sufficient to prevent driver misuse of the 
SAE Level 2 advanced driver-assistance feature.”23  

As a part of this recall, Tesla sought to address the driver engagement problem with an 
over-the-air software update that added more controls and alerts to “encourage the 
driver to adhere to their continuous driving responsibility whenever Autosteer is 
engaged.” That encouragement manifested as:  

“increasing the prominence of visual alerts on the user interface, simplifying 
engagement and disengagement of Autosteer, additional checks upon engaging 
Autosteer and … eventual suspension from Autosteer use if the driver repeatedly 
fails to demonstrate continuous and sustained driving responsibility while the 
feature is engaged.”24 

Training or certification was not included with the software update; however, a text 
summary of the software update was provided for users to optionally review, and 
videos of users indicate that the instructions were easy to ignore. Users also had the 
option to ignore safety features in the update altogether. The efficacy of these specific 
changes (either individually or in total) is not yet clear. In April 2024, NHTSA launched a 
new investigation into Tesla’s Autosteer and the software update it performed in 
December 2023 but, as explained earlier, experiential encounters alone can improperly 
calibrate the trust new drivers place in their autonomous vehicles.25 

Case Study 1:  Key Takeaways from User Level Case Study 

● Wider gaps in misalignment between perceived and actual technology 
capabilities can lead to, or otherwise exacerbate, automation bias.  

● Automation bias will be impacted by the user’s level of prior knowledge and 
experience, which should be of particular concern in safety critical situations. 
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In the U.S., drivers are often considered the responsible party in car accidents, 
particularly when it comes to the role of the driver and the role of the system.26  

As David Zipper, Senior Fellow at the MIT Mobility Initiative, explained: 

“In the United States, the responsibility for road safety largely falls on the 
individual sitting behind the wheel, or riding a bike, or crossing the street. 
American transportation departments, law enforcement agencies, and news 
outlets frequently maintain that most crashes—indeed, 94 percent of them, 
according to the most widely circulated statistic—are solely due to human error. 
Blaming the bad decisions of road users implies that nobody else could have 
prevented them.”27 

However, even the most experienced and knowledgeable human users are not free 
from the risk of overreliance in the face of poor interface and system design, and there 
is a peculiar dynamic at play with autonomous vehicles: When incidents occur, blame 
often falls on the software.28 While the software may not be blameless, the 
combination of the system and inappropriate human use must also be considered in 
identifying the causes of harm. Therefore, ways of intervening or monitoring to prevent 
inappropriate use by drivers should be sought out alongside ways of improving the 
system’s technical features and design. 

Case Study 2: How Technical Design Factors Can Induce Automation Bias 

A review of crashes in the aviation industry demonstrates that even in cases where 
users are highly trained, actively monitored, possess a thorough understanding of the 
technology’s capabilities and limitations, and can be assured not to misuse or abuse the 
technology, a poorly designed interface can make automation bias more likely.  

Fields dedicated to optimizing these links between the user and the system, such as 
human factors engineering and UI/UX design, are devoted to integrating and applying 
knowledge about human capabilities, limitations, and psychology into the design and 
development of technological systems.29 Physical details, from the size and location of a 
button to the shape of a lever or selection menu to the color of a flashing light or image, 
seem small or insignificant. Yet these features can play a pivotal role in shaping human 
interactions with technology and ultimately determining a system’s utility. 
 
The importance of considering human interaction in the design and operation of these 
systems cannot be overstated—neglecting the human element in design can lead to 
inefficiencies at best, and unsafe and dangerous conditions at worst. Poorly designed 
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interfaces, characterized by features as simple as drop-down menus with a lack of clear 
distinctions, were, for example, at the core of the accidental issuance of a widespread 
emergency alert in Hawaii that warned of an imminent, inbound ballistic missile 
attack.30 
 
Design choices, intentionally or not, shape and establish specific behavioral pathways 
for how humans operate and rely on the systems themselves. In other words, these 
design choices can directly embed and/or exacerbate certain cognitive biases, including 
automation bias. These design choices are especially consequential when it comes to 
hazard alerts, such as visual, haptic, and auditory alarms. The commercial aviation 
industry illustrates how automation bias can be directly influenced by system designs: 

The Human-Machine Interface: Airbus and Boeing Design Philosophies 

Automation has been central to the evolution of the airplane since its inception—it took 
less than ten years from the first powered flight to the earliest iterations of autopilot.31 
In the years since, aircraft flight management systems, including those that are AI-
enabled, have become successively capable. Today, a great deal of the routine work of 
flying a plane is handled by automated systems. This has not rendered pilots obsolete, 
however.32 On the contrary, pilots must now incorporate the aircraft system’s 
interpretation and reaction to external conditions before determining the most 
appropriate response, rather than directly engaging with their surroundings. While 
overall, flying has become safer due to automation, automation bias represents an ever-
present risk factor.33 As early as 2002, a joint FAA-industry study warned that the 
significant challenge for the industry would be to manufacture aircraft and design 
procedures that are less error-prone and more robust to errors involving incorrect 
human response after failure.34  

While there are international standards as well as a general consensus among aircraft 
manufacturers that flight crews are ultimately responsible for safe aircraft operation, 
the two leading commercial aircraft providers in the United States, Airbus and Boeing, 
are known for their opposite design philosophies.35 The differences between them 
illustrate different approaches to the automation bias challenge. 

In Airbus aircraft, the automated system is designed to insulate and protect pilots and 
flight crews from human error. The pilot’s control is bounded by “hard” limits, designed 
to allow for manipulation of the flight controls but prohibitive of any changes in altitude 
or speed, for example, that would lead to structural damage or loss of control of the 
aircraft (in other words, actions to exceed the manufacturer’s defined flight envelope).   
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In contrast, in Boeing aircraft, the pilot is the absolute and final authority and can use 
natural actions with the systems to essentially “insist” upon a course of action. These 
“soft” limits exist to warn and alert the pilot but can be overridden and disregarded, 
even if it means the aircraft will exceed the manufacturer’s flight envelope. 

These design differences may help explain why some airlines only operate single-type 
fleets; pilots typically stick to one type of aircraft, and cross-training pilots is possible 
but costly and, therefore, uncommon.36 

Table 2 shows an FAA summary of the different design philosophies: 

Table 2: Airbus and Boeing Design Philosophies 

Airbus Boeing 

Automation must not reduce overall 
aircraft reliability; it should enhance 
aircraft and systems safety, efficiency, 
and economy. 

Automation must not lead the aircraft out 
of the safe flight envelope, and it should 
maintain the aircraft within the normal 
flight envelope. 

Automation should allow the user to use 
the safe flight envelope to its full extent, 
should this be necessary due to 
extraordinary circumstances. 

Within the normal flight envelope, the 
automation must not work against 
operator inputs, except when absolutely 
necessary for safety. 

The pilot is the final authority for the 
operation of the airplane. 

Both crew members are ultimately 
responsible for the safe conduct of the 
flight. 

Flight crew tasks, in order of priority, are 
safety, passenger comfort, and efficiency. 

Design for crew operations is based on 
pilot’s past training and operational 
experience. 

Design systems are error tolerant. 

The hierarchy of design alternatives is 
simplicity, redundancy, and automation. 

Apply automation as a tool to aid, not 
replace, the pilot. 

Address fundamental human strengths, 
limitations, and individual differences—
for both normal and nonnormal 
operations. 
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Use new technologies and functional 
capabilities only when: 

1) They result in clear and distinct 
operational or efficiency 
advantages, and  

2) There is no adverse effect to the 
human-machine interface. 

Source: Kathy Abbott, “Human Factors Engineering and Flight Deck Design,” in The Avionics Handbook, 
edited by Cary Spitzer, CRC Press LLC, 2001. 

Despite the divergence in their design philosophies, both aircraft types maintain high 
levels of popularity and safety, with “virtually every large passenger plane that is flown 
in the Western world” being built by either Airbus or Boeing, proving the effectiveness 
of their respective approaches when consistently applied across design, training, and 
operations.37 Neither is immune, however, to accidents or failures, especially when 
these philosophies are violated, or changes are not adequately communicated to users.  

Boeing Incidents 

On October 29, 2018, Lion Air Flight 610 crashed. Less than six months later, on March 
10, 2019, Ethiopian Airlines Flight 302 crashed. Both incidents, plus a third incident 
involving another Boeing 737 Max 8 aircraft that narrowly avoided a crash, resulted in a 
combined 346 fatalities. While the exact nature of these accidents varied, all three were 
ultimately attributed to complications arising from Boeing’s introduction of new 
software—the Maneuvering Characteristics Augmentation System, or MCAS.  
 
The MCAS system was engineered to assist in maintaining the 737 Max’s stability 
during flight and prevent conditions that could lead to a stall. While the system was 
designed to assist the pilot and could be overridden, the update was not well 
communicated to the pilots and thus may have violated one of Boeing’s principles to 
“design for crew operations based on pilot’s past training and operational 
experience.”38  
 
While Boeing’s failure to communicate the change adequately is reminiscent of issues 
Tesla has faced communicating updates to drivers, the deviation from past design 
principles may have further served to undermine the pilot’s control.39 Indeed, a review 
by the National Transportation Safety Board determined that “in all three flights, the 
pilot responses differed and did not match the assumptions of pilot responses to 
unintended MCAS operation on which Boeing based its hazard classifications.”40 
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Airbus Incidents 

Perhaps an even more powerful case study concerning the consequences of 
technology design choices is the case of Air France Flight 447, which crashed in the 
Atlantic on June 1, 2009. Nearly three years later, the French Civil Aviation Safety 
Investigation Authority released its final report detailing how technical issues caused by 
ice on parts of the plane led to inconsistent speed measures and the shutting off of 
autopilot. This shutoff caused the crew to make choices that stalled the plane—an 
uncommon occurrence thanks to onboard automated systems—and eventually led to 
the crash. 41 

Post-accident reporting and subsequent analysis raised the question that even if one 
conceded the design flaw that led to the initial autopilot shutoff, “How could the pilots 
have a computer yelling “stall” at them and not realize they were in a stall?”42 
Ultimately, it was a confluence of human error and poor system design. The system 
design issue was with the flight management system, which presented a flurry of alerts 
and warnings to the pilot that “made it overwhelmingly difficult to recognize what was 
happening.”43  

In addition to the alerts, it was clear that automation itself played some role in the 
crash. In particular, there was a concern that approaches like Airbus’, which 
emphasized protecting the pilot, actually went too far and were eroding pilot 
capabilities and skills by making them too dependent on the automated systems.44 
Ironically, as automation has made air travel much safer, it has also reduced the 
instances where a human pilot must take control of the plane in more complicated 
situations. This may in turn degrade the pilot’s ability to properly control the plane 
when it is most needed.  
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Both Boeing’s and Airbus’ past incidents underscore the complexity and risks 
associated with human-machine interaction. The interface design, physical layout, and 
functionality of controls directly influence user behavior and decision-making 
processes. In essence, design can induce user biases, including automation bias.  
  
Both design approaches—whether prioritizing human control or protection—can be 
successful when communicated effectively, consistently, and purposefully. Human 
factors design choices should not be an afterthought. The rationale behind technical 
design choices should be aligned with organizational goals, priorities, and preferences. 
In these cases, users can better anticipate system behavior, respond promptly to 
changing circumstances, and more rapidly identify and explain any deviations from the 
norm, hopefully before accidents occur. That said, no system is 100% error-proof.  

Case Study 3: How Organizations Can Institutionalize Automation Bias  

While the Airbus incident with Air France 447 is a case study in human factors design 
choices, the after-action report also explained that “the behavior observed at the time 
of an event is often consistent with, or an extension of, a specific culture and work 
organization.”45 Organizational factors influencing automation bias include formal 
guidance documents, institutional processes, procurement guidelines, audits or 
inspections, incentive programs, and stated priorities, as well as informal norms or 
training expectations. These factors should be appreciated as both a source of risk and 
a hedge against errors by humans or technologies.46 Organizational policies and 

Case Study 2: Key Takeaways from Technical Design Level Case Study 

● Even with highly trained users, system design flaws can induce more harms. 
Neglecting human factors in system design can undermine users’ ability to 
operate technology effectively and safely. 

● Maintaining a “human-in-the-loop” is insufficient to preventing accidents or 
errors. There must be clear communication between the human user and the 
system, as well as sufficient training for the user, such that the “handover” 
from the system to the human does not become a weak point. 

● Different design philosophies have different risks; they are not necessarily 
inherently better or worse. Any approach requires clear, consistent 
communication and application. 
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processes for risk reduction are widely practiced in areas such as occupational safety 
and cybersecurity. The healthcare field has extensively studied the factors that make for 
“high reliability organizations,” a term that was first studied in the context of aircraft 
carrier operations.47 These organizational controls take as a premise that if “we cannot 
change the human condition, we can change the conditions under which humans 
work.”48 

Divergent Organizational Approaches to Automation: Army vs. Navy 

The U.S. military provides an insightful case study of how an organization can shape 
automation bias. The military is able to exercise significant control over its users 
through organizational policies and nearly a century’s worth of experience deploying 
highly automated defensive systems to service members. Within the military, the Army 
and Navy deploy a very similar automated missile defense system with two very 
different approaches. 

The Navy’s AEGIS weapons system and the Army’s Patriot system are tiered autonomy 
systems that scan for incoming air threats (missiles or aircraft), track them with highly 
capable radars, and guide missiles (for AEGIS the “Standard Missile” or SM; for Patriot, 
the Patriot Advanced Capability or PAC) to strike an incoming threat.49 The systems are 
capable of supervised autonomous operations up to and including launching defensive 
missiles without human input, in comparable ways (see Table 3). They have been 
widely viewed as successful defensive systems since the late 1980s, though there have 
been notable disasters associated with both.50  
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Table 3: Comparison of AEGIS and Patriot Weapons Systems Autonomous Functions 

AEGIS51 Patriot52 

Manual Identification  

The user must evaluate a detected radar 
track and assign an identity (e.g., friend, 
unknown, hostile) based on the track’s 
location, speed, the Identification Friend or 
Foe System (IFF), and electronic emissions. 

Manual Identification 

The user must evaluate a detected radar 
track and assign an identity (e.g., friend, 
unknown, hostile) based on the track’s 
location, speed, IFF, and electronic 
emissions. 

IFF, Identification, Drop-Track Doctrine 

These three separate doctrines can be 
individually or collectively activated to 
perform track identification tasks. IFF 
doctrine automatically performs an IFF 
query within a certain geographic area. 
Identification doctrine automatically 
identifies a detected track and assigns an 
identity (e.g., friend, unknown, or hostile) 
based on location, speed, IFF and course. 
Drop-Track will automatically remove tracks 
from a user’s display if they meet predefined 
criteria for being incorrect tracks (e.g., 
weather-related clutter). 

Automatic Identification Mode 

The system will automatically identify a 
detected track and assign an identity 
(e.g., friend, unknown, hostile) based on 
the track’s location, speed, IFF, and 
electronic emissions. 

Auto SM Doctrine 

The system automatically identifies 
threatening targets and notifies users to 
manually engage. 

Semiautomatic Engagement Mode 

The system automatically identifies and 
prioritizes threatening targets for users to 
manually engage. 

Auto-Special Doctrine 

The system will automatically engage and 
fire against threats that meet set parameters 
without human user action required. A 
human user can halt the engagement. 

Automatic Engagement Mode 

The system will automatically engage and 
fire against threats that meet set 
parameters without human user action 
required. A human user can halt the 
engagement. 
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While the two systems function very similarly, the U.S. Army and Navy employ different 
approaches in how they are governed and provide a useful study of how organizations 
can shape user interactions.  

Patriot: A Bias Towards the System 

Both the Army and Navy employ detailed, specific instructions and processes to govern 
deployed weapons. Among these are rules of engagement (ROE), weapon control 
status orders, self-defense engagement criteria, and airspace control orders which are 
among the controls “developed specifically for the theater, and put into operation 
quickly to reduce the possibility of fratricide . . .”53 

Despite these controls and consistent success in Operation Desert Storm, in 2003 the 
Patriot system was involved in three separate friendly fire incidents during Operation 
Iraqi Freedom: one that mistook a Patriot battery for an enemy surface-to-air missile 
system, and two that misclassified coalition aircraft. The latter incidents resulted in 
three fatalities.54  
 
In 2005, the Defense Science Board conducted a review of the overall performance of 
the Patriot system in Operation Iraqi Freedom and found that these incidents followed 
the “Swiss cheese” model of safety incidents, a result of a series of failures—“some 
human and some machine”— that all contributed to the unfortunate outcomes. Among 
their conclusions as to the source of the fratricides, they included fault with the Patriot 
system operating philosophy, protocols, displays, and software, which they found 
inappropriately tailored for the mission.55 
 
On this point, the report elaborated that the Army preferred to use the system in the 
“automatic” mode so it could operate faster.56 Official Army guidance from 2002 does 
instruct users that the “default” mode for Patriot is to fight in the “automatic 
engagement mode” as opposed to manual or automatic identification mode (see Table 
3). In the case of theater ballistic missile (TBM), for example, the instruction states: 

“When the system has classified a target as a TBM, engagement decisions and 
the time in which the user has to make those decisions are very limited.”57 

In addition to this documented guidance, Air Defense Artillery training was criticized as 
a factor contributing to automation bias and cognitive off-loading by users because it 
emphasized “rote drills versus the exercise of high-level judgment.”58 
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Between doctrine (guidance to operate in an automatic mode), training (which was 
“rote”), and the success of Patriot 10 years earlier in Operation Desert Storm, Patriot 
operators became biased toward “reacting quickly, engaging early, and trusting the 
system without question.”59 The bias was such that in some of the incidents, Patriot 
was operating only in semi-automatic engagement mode and a human user confirmed 
an engagement on an incorrectly identified track. As one researcher later put it, “Patriot 
operators, while nominally in control, exhibited automation bias: an unwarranted and 
uncritical trust in automation. In essence, control responsibility is ceded to the 
machine.”60 It was put more bluntly by a later researcher: “A semi-automatic system in 
the hands of an inadequately trained staff is de facto a fully automated system.”61 

AEGIS: A Bias Towards the Human 

Balancing the dynamic roles between human and machine is complicated. Moreover, as 
the AEGIS system demonstrates, weighting decision-making towards the human will 
not eliminate all risks from autonomous systems. 

The AEGIS weapons systems are central pillars of air defense for the U.S. Navy. 
Despite its capabilities and centrality to naval defense, Navy training and doctrine show 
a preference towards decisions by users rather than determinations by autonomous 
systems. These biases are visible in the staffing, doctrine, and training for AEGIS. An 
AEGIS air engagement, for example, will involve several qualified sailors (officers and 
enlisted) in the task of identifying a radar track, tasks they can manually perform even 
when the system is in an autonomous mode. Furthermore, Navy training 
documentation makes clear that elements of AEGIS are prone to failure, saying, for 
example in a 1991 training manual:  

“It is quite possible that the IFF equipment may be functioning improperly. The 
only reasonable recourse in the event of no IFF return is to get as many [air] units 
as possible on the contact . . . If time is short, and we cannot receive the correct 
IFF response, we must assume that the contact is an enemy.”62 

Unclassified documents also make clear that the onus of responsibility is placed on the 
AEGIS watch-standers; for example, the same training document concludes an 
overview of the AEGIS system with the following paragraph: 

“Your training in combat systems is a never-ending process which you must 
approach with an aggressive and unremitting attitude until actions become 
almost second nature. Your duties are many and complex; to be effective 
requires your total commitment.”63 
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Despite the sophistication of the AEGIS system and the emphasis on human control, in 
1988 during the Iran-Iraq war, the USS Vincennes, one of the first ships to employ 
AEGIS, inadvertently shot down civilian aircraft Iran Air Flight 655, having mistaken it 
for an Iranian fighter aircraft. The incident occurred within the context of extreme 
stress: The ship was concurrently engaging Iranian ships, and intelligence and 
warnings suggested an assault that particular weekend. Furthermore, the USS Stark 
had been struck by an Iraqi jet a year earlier.64 The shootdown resulted in the deaths of 
nearly 300 people and further tension between the United States and Iran that has 
continued to today.65 

Analysis of the USS Vincennes incident found that AEGIS worked correctly. It identified 
the aircraft in question as a civilian aircraft ascending from launch. However, the 
Vincennes crew did not seem to recognize the information, instead reporting that the 
aircraft was descending and a military aircraft, thus justifying defensive weapons.66   

The USS Vincennes incident shows that even when humans are taught and trained to 
be skeptical of a system, users can fail to correctly interpret the system’s output or 
appropriately trust the technology, particularly under situations of extreme stress.67  

The AEGIS and Patriot weapons systems show how organizational policies play a 
significant role in shaping automation bias. In the case of AEGIS, the Navy organized 
itself to preference human decisions. In the case of Patriot, the Army made decisions 
that preference automated system decisions.   

The 2003 Patriot fratricides and the 1988 USS Vincennes incident further highlight that 
regardless of approach, there are risks of mishap. The Army has successfully employed 
Patriot for decades and it is a coveted defensive weapon, despite tragic past errors. The 
Navy has also successfully employed AEGIS under different rules and assumptions, but 
it has also experienced at least one lethal failure when sailors were under extreme 
stress. Therefore, organizational decisions that shape automation bias are not fail-safe 
against risk, and they must be carefully considered in light of technology capabilities, 
user understanding, and context of deployment.  

Case Study 3: Key Takeaways from Organizational Level Case Study 

• Organizations can employ the same tools and technologies in very different
ways, based on protocols, operations, doctrine, training, and certification. 
Choices in each of these areas of governance can embed automation biases. 

• Organizational efforts to mitigate automation bias can be successful, but
mishaps are still possible, especially when human users are under stress. 
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Conclusion 

Unaddressed automation bias has already culminated in catastrophic accidents. From 
these case studies of past mishaps, we identify three important factors affecting a 
user’s automation bias: those intrinsic to the human user, such as personal biases, 
experience, and confidence in using the system; those inherent to the AI system, such 
as how it can be operated or how it presents information; and those created by 
organizational factors such as standard processes and procedures.  

Addressing these factors affecting risk in the application of AI, particularly in safety-
critical contexts, requires focused attention during the design and deployment of AI 
systems. With the lessons learned from the three case studies, we recommend as a 
starting point the following mitigations: 

● Create and maintain qualification standards for user understanding. In each of
our case studies, we learned that misunderstandings by users often contributed
to the incident, either generally or due to a specific recent system change or
upgrade. Since user understanding is critical to safe operation, system
developers and vendors must invest in clear communications about their
systems and organizations and governments may need to create qualification
or re-qualification regimes appropriate to the technology and its use.

● Value and enforce consistent design and design philosophies, especially for
systems likely to be upgraded. When necessary, justify departures from a
design philosophy and make choices well-known to legacy users. Where
possible, develop common design criteria, standards, and expectations, and
consistently communicate them (either through organizational policy or
industry standards) to reduce the risk of confusion and automation bias.

● Where autonomous systems are used by organizations, design and regularly
review organizational policies to be consistent with technical capabilities and
organizational priorities. Update policies and processes as technologies change
to best account for new capabilities and mitigate novel risks. Look for
opportunities to implement principles of high-reliability organizations around the
management of frontline AI deployment.

The risk of accidents or misuse of AI-enabled systems will evolve alongside technology, 
the design of human-machine interactions, and user understanding. The successful, 
safe, and ethical deployment of AI relies not only on its capacity to work seamlessly 
with human users but also on the competence and accountability of the humans 
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overseeing, monitoring, managing, using, and ultimately relying on these systems. If 
humans “in-the-loop” are to be effective, they must learn when and how to cognitively 
offload tasks to AI systems. 
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