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Introduction 
 
The intersection between cybersecurity and artificial intelligence is ripe for 
serious study from a variety of angles. There are purely technical aspects of 
great importance, such as how artificial intelligence changes the discovery of 
software vulnerabilities useful for hacking computer systems and the capacity 
for defenders to detect malicious code within their networks. Yet many of 
these technical questions have already been well-specified and are the 
subject of promising inquiries. This research agenda instead examines a 
different angle, one of national security.1  
 
A national security-driven research agenda is informed by technical 
evidence, but not limited by it. It considers how the balance of technical facts 
shapes questions likely to matter to national security policymakers and 
scholars who would otherwise overlook the technology. More generally, it 
offers policymakers a set of questions—and, someday, answers—that they 
should consider, but that are probably unfamiliar to them.  
 
This agenda focuses on the machine learning paradigm of artificial 
intelligence. It has four components: offense, defense, adversarial learning, 
and overarching questions.  
 

● Offense considers the ways in which machine learning might change 
the techniques adversaries already use to gain unauthorized access 
to computer systems, from discovering software vulnerabilities to 
infiltrating a target system and beyond.  

● Defense considers how machine learning systems can aid in detecting 
and responding to intrusions, as well as remediating malicious code.  

● Adversarial learning examines the cybersecurity weaknesses of 
machine learning systems themselves and the data upon which they 
depend.  

● Overarching questions examine the ways in which the properties and 
powers of machine learning systems can change the strategy and 
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conduct of cyber operations, from influence campaigns to accident 
risks to strategic stability and beyond.  

 
Each section contains several key questions, including some whose answers 
will be complex and context-dependent; the discussion that follows is an 
illustrative, rather than exhaustive, list.  
 
Offense 
 
Offensive cyber operations have long been conceptualized using an idea 
known as the kill chain—the sequence of steps hackers cycle through in order 
to achieve their aims. One of the foremost national security questions at the 
intersection of cybersecurity and AI is the degree to which machine learning 
will reshape or supercharge this kill chain. There are reasons for concern, but 
also reasons to think present-day automation—not using machine learning 
techniques—is already effective in human-machine teams; perhaps the 
additional power offered by machine learning may not tip the scales. A 
thorough study of the kill chain is in order. 
 
Such a study may be of particular value to network defenders or software 
engineers. For example, both hackers and defenders have an interest in 
finding vulnerabilities in software; the former to exploit them, the latter to 
remediate them.  
 
Vulnerability Discovery 
 
Can machine learning better find software vulnerabilities? A fundamental 
aspect of many offensive cyber operations is finding and exploiting these 
weaknesses in computer code. While many of the vulnerabilities exploited in 
cyber operations have been found and used by others, some are novel. These 
so-called zero-day vulnerabilities confer greater power because no security 
patches exist to stop hackers from exploiting them. While zero-days are often 
overhyped in cybersecurity policy discussions, finding and exploiting them 
remains a key part of advanced modern cyber operations. All else being 
equal, hackers who are more capable of doing this—and of stringing zero 
days together into exploit chains achieving still greater access—will have 
more freedom of action and offensive capability.  
 
Automated tools can already help find vulnerabilities that might be 
exploitable. In particular, tools known as fuzzers provide carefully crafted 
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inputs to computer code, seeking failures that would reveal a vulnerability. 
Researchers are exploring how machine learning might improve the analysis 
of data generated by fuzzers and find vulnerabilities that would go 
undiscovered using current methods.2 In the hands of skilled hackers, better 
fuzzers and better tools for analyzing the data they produce will likely confer 
an advantage.  
 
Spear-phishing 
 
Can machine learning better tailor and scale spear-phishing attempts? Spear-
phishing—the practice of delivering malicious code or gaining unauthorized 
access via socially engineered messages—remains one of the most common 
and effective offensive techniques. A panoply of notable cyber operations 
have relied on it, from the Russian hack of Clinton campaign chairman John 
Podesta’s emails to reams of Chinese espionage efforts. And yet the process 
of spear-phishing can seem manual and cumbersome: finding a target, 
determining what kind of message the target might believe, then crafting and 
sending such a message. The less-careful alternative to spear-phishing, 
known simply as phishing, forgoes much of this customization to achieve 
greater scale; in phishing operations, many more messages are sent with 
much less sophistication, such as the once-ubiquitous claim of money waiting 
in a bank account in Nigeria.  
 
AI might offer the possibility to retain the relative sophistication of spear-
phishing while also attaining the scale of traditional phishing. If machine 
learning systems can generate credible messages that appear to come from 
plausible senders—and that evade any automated attempts at detection—
they could materially increase the volume of such messages and their 
potential success rate. Achieving this would require substantial advances in 
natural language processing, an area of inquiry that has seen rapid growth 
over the past decade.3  
 
Propagation 
 
Can machine learning change how effectively malicious code spreads itself? 
Self-propagating cyber capabilities have been around for decades, dating to 
at least the 1988 Morris worm. The ability of malicious code to spread itself 
from computer to computer and network to network is worrying, as it offers 
exponential reach in offensive cyber operations. A number of attacks with 
national security implications have exploited this potential, including the 
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Stuxnet worm that targeted Iran’s nuclear program and the 2017 NotPetya 
attack that affected hundreds of thousands of computers in more than 100 
countries, causing more than $10 billion in damage.  
 
NotPetya’s automated propagation mechanism, which relied mostly on 
password theft but also on a repurposed National Security Agency (NSA) 
exploit, meant it could rip through targeted networks in seconds or minutes, 
making it one of the fastest-spreading pieces of malicious code in history. 
One analyst of the code, Craig Williams of Cisco, said, “by the second you 
saw it, your data center was already gone.” NotPetya did not employ any 
machine learning techniques to achieve this prolific speed.4 
 
Given how impressive baseline self-propagation mechanisms are without AI, 
it remains an open question whether machine learning will render future 
attacks any more effective. Current techniques usually rely on only a handful 
of propagation mechanisms and succeed primarily because so many systems 
are vulnerable. More complex mechanisms might be necessary for self-
propagation of malicious code if a defender employs improved machine 
learning-enabled protections. One option for attackers could be to enable a 
greater number and diversity of propagation techniques based upon actual 
network conditions encountered during an intrusion. Machine learning 
mechanisms might also enable better selection of propagation techniques 
compared to present-day automation and heuristics. That said, both of these 
claims are speculative and need further investigation, ideally with quantifiable 
metrics and perhaps with lab experiments. It may be that, for all of their hype, 
machine learning systems will not meaningfully change the self-propagation 
of malicious code and that incentives for pursuing new and more advanced 
techniques will remain low if current ones continue to work well.  
 
Obfuscation and Anti-Forensics 
 
Can machine learning better hide offensive cyber operations? One of the 
primary goals of an intruder is not to get caught. If machine learning 
continues to aid defenders in detecting malicious activity—and it will likely 
improve at that—perhaps it also might aid hackers looking to remain 
undetected. Intruders have long taken steps, from code obfuscation to 
packing to process hollowing to fileless malicious code and more, to try to 
reduce the visibility of their operations. In theory, machine learning systems 
could aid the deployment of these anti-forensics tools. At a minimum, it will be 
necessary for intruders to understand the weaknesses of the machine 
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learning-based defenses they will face and to exploit those weaknesses, 
perhaps using adversarial learning as discussed below.  
 
Destructive Power  
 
Can machine learning make cyber capabilities more powerful? In general, 
the most destructive cyber capabilities are the ones that take existing 
components of physical and computer systems and either prevent them from 
functioning or cause them to work in unintended ways.5 For example, wiping 
attacks cripple computing infrastructure by overwriting fundamental pieces of 
computer code on which the system rests. Stuxnet and other attacks against 
critical infrastructure manipulated commands in order to destroy physical 
components, such as by changing the speed at which a centrifuge spins or the 
pressure of the gas within it.  
 
Machine learning is unlikely to offer much in wiping attacks. If hackers obtain 
sufficient privileges and access, executing a wiping attack is not technically 
sophisticated and leaves little room for innovation. But, manipulating complex 
physical infrastructure, seems more promising. The widespread use of systems 
modeling employed by high-end manufacturers to monitor and maintain their 
products could provide fertile ground for AI systems to facilitate physically 
destructive attacks. By repurposing a stolen systems model or understanding a 
system’s configuration, machine learning could help calibrate and 
camouflage physically destructive attacks in order to slowly render systems 
unusable. It is here that machine learning capabilities might make a 
substantial difference in the power of offensive operations, though the data 
remains extremely sparse and the concept speculative.  
 
Perhaps the most salient piece of data is the 2016 blackout in Ukraine 
caused by Russian hackers working for the GRU, Russia’s military intelligence 
agency. Unlike the 2015 blackout in Ukraine, which was manually 
orchestrated in a step-by-step fashion, the 2016 blackout employed 
automation, though not machine learning. The code, known as 
CRASHOVERRIDE, contained components that sought to identify key aspects 
of the targeted power systems and then to enable an attack.6 Though not all 
components functioned as intended, it is perhaps a harbinger of things to 
come, in which automated attack systems yield cyber operations more 
powerful in their destructive physical effects.  
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Defense  
 
Machine learning holds promise for cyber defense. The single biggest 
challenge for network defenders is detection: finding the adversary’s 
presence in one’s own network. Detection times vary based on the 
sophistication of the attacker and defender, but the average once lingered at 
well over a year. While defenders have improved, in many cases intruders 
can operate for months within the target network, unnoticed and 
unconstrained.7 Virtually every major cyber attack—such as Stuxnet, the two 
blackouts in Ukraine, and NotPetya—has been preceded by months, if not 
years, of reconnaissance and preparation.8 This window offers an 
opportunity. If machine learning can improve detection, interdiction, and 
attribution, it can dramatically reduce the potential dangers of cyber 
operations. That said, machine learning has been applied to cyber defense 
for several years already and challenges persist; it is thus vital to ground the 
evaluation of machine learning-aided cyber defense not just in theory but in 
practical—and ideally measurable—results.  
 
It is worth noting again that some offensive technology has defensive 
applications as well, insofar as defenders choose to simulate offensive actors 
or find and remediate software vulnerabilities before hackers discover and 
exploit them.  
 
Detection 
 
Can machine learning help detect malicious code when it arrives on a 
network or a computer system? Detection is the first fundamental challenge for 
cyber defense; if an adversary is not found, it cannot be removed, and many 
cyber operations have gone unimpeded for months or years because of a 
failure to detect.  
 
Machine learning may substantially improve detection. The amount of data 
on modern computer systems and networks is so vast that most non-AI 
techniques, including human analysis, cannot keep up. While humans must 
still investigate and adjudicate more complex alerts, machine learning systems 
can make continual first passes through data in order to detect anomalous 
activity. In addition, machine learning techniques such as supervised learning 
have proven capable of finding patterns in large, complex data sets that have 
previously remained hidden from human analysis and traditional techniques. 
Engagement with private sector analysts will likely shed substantial light on 
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the usefulness of this technology and the ways in which it may improve. Unlike 
many of the other possible applications of machine learning discussed in this 
research agenda, substantial data supports this claim, though that data is 
often proprietary in its nature.  
 
Interdiction 
 
Can machine learning help thwart, not just detect, offensive cyber operations? 
It stands to reason that if machine learning can detect offensive cyber 
operations in progress, then it can probably help delay or block them as well. 
This assumption requires a high confidence that the machine learning system 
can function as intended, since the effects of an inadvertent shutdown can be 
substantial. Nonetheless, if that confidence is warranted, then it is quite 
possible to extend detection capabilities to include defense, stopping or 
otherwise interfering with malicious actors as they begin interacting with 
target systems.  
 
The best example of this hope may be DARPA’s Grand Cyber Challenge in 
2016, which pitted automated competitors against one another in a stylized 
capture the flag competition. In addition to gaining access to other 
competitors’ systems, the players had to defend their own systems, finding 
and addressing weaknesses in code. That said, the DARPA challenge, though 
significant, is hardly a real-world example, and public investigation of this 
topic has waned since then. Much more analysis is needed about the 
concrete capabilities, risks, and tradeoffs involved in using machine learning 
for more proactive cyber defense.  
 
Attribution 
 
Could machine learning programs more effectively attribute cyberattacks? 
While fundamentally a political matter, attribution has substantial technical 
inputs. It is also one of the most debated—and perhaps most important—
subjects in cybersecurity strategy and a foundation for goals like deterrence.9 
While attribution is often more tractable than many believe, machine learning 
might strengthen it further.  
 
For example, unsupervised learning clustering algorithms could link code 
snippets, identify persistent groups of attackers, or help identify groups that 
could be responsible for a new attack. Or natural language processing might 
allow for linguistic attribution of code snippets or of messages; such methods, 
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for example, might have determined that the specific grammatical errors 
made in the WannaCry English messages most probably came from native 
Korean speakers. Advanced cybersecurity companies likely already employ 
some of these methods in their analysis.  
 
Adversarial Learning 
 
Thus far, this research agenda has focused on how machine learning will 
change the current and future practice of offensive and defensive cyber 
operations. But another set of questions also deserves analysis: what about 
the cybersecurity vulnerabilities of machine learning systems themselves? It 
stands to reason that they will be vulnerable to many of the same weaknesses 
as traditional computer systems, such as the potential for software bugs that 
an attacker could exploit. Moreover, they offer new kinds of fundamental 
vulnerabilities providing hackers additional opportunities to undermine the 
effectiveness of machine learning systems in critical moments. Yet, for all of 
this, credible estimates suggest only one percent of AI research money is 
spent on machine learning security and safety.10  
 
Adversarial Examples 
 
Can machine learning systems be fooled, and can they be secured against 
these attempts at deception? One of the fundamental tasks of modern 
machine learning is classification: identifying to which category something fits. 
The field is full of these sorts of systems, from spam filters to digit readers to 
image recognition tools. Any good classification system needs to be alert to 
forgeries, camouflage, and deception. Some types of deception are quite 
intuitive; for example, a four may be written to look more like a nine, or a 
spam email might try to sound authoritative and credible. These deceptions 
mostly seek to fool humans by taking advantage of how the brain processes 
information.  
 
But other deceptions aim to fool machine learning systems instead of, or in 
addition to, humans. Adversarial examples fit into this category. They target 
the mechanisms neural networks use to process information and make 
classifications, which are distinct from human information processing. Once 
understood—often by running the neural network in reverse—these 
mechanisms can be exploited. Hackers can craft an adversarial example that 
looks entirely normal to a human but like something very different to a 
machine. Examples from academic study show how changing just a few 
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pixels can affect how a machine learning system classifies an image, 
dramatically changing the result in a way almost entirely undetectable to 
human observers.11  
 
As machine learning systems are used in more prominent and important 
decisions, two things occur. First, the number of potential hackers increases, 
as more people will have an incentive to target those systems. Second, the 
consequences of failure increase, as the decisions are by definition higher 
stakes. Machine learning systems may be used in intelligence analysis or 
even lethal autonomous weapons—contexts where managing the risks of 
adversarial examples becomes fundamental. The possibility of adversarial 
examples must be carefully studied before machine learning systems are 
deployed to any mission-critical environment and robust countermeasures 
must be developed.  
 
Data Poisoning  
 
Can machine learning systems fail due to their training data? For many 
machine learning systems, training data is fundamental. Without the explicit 
instructions provided in other forms of computer programs, these systems 
learn virtually all they will ever know from the data they are provided. For 
hackers, this creates an opportunity: change what data the system sees during 
training and therefore change how it behaves. This risk is particularly acute 
for systems continually trained and retrained based on user input, such as 
recommendation systems and some spam filters.  
 
This class of activity, known as data poisoning, deserves further technical 
study.12 More in-depth research will likely reveal significant vulnerabilities for 
machine learning systems deployed in national security environments in which 
there are dedicated adversaries.  
 
Data Pipeline Manipulation 
 
While data poisoning focuses on contaminating the training process for 
neural network classifiers, other malicious data attacks are relevant as well. 
Even without attacking the model and training data, an attacker can cause 
data to be misclassified by modifying the input data before it reaches the 
machine learning system. Poor underlying cybersecurity practices could allow 
attackers to modify input data while in transit or while stored on servers. 
Researchers demonstrated this attack vector recently by modifying CT scans 
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while the data was in transit from the CT scanning machine to the data 
server.13 
 
It may be possible to gain access using regular cybersecurity vulnerabilities 
and then insert carefully generated or manipulated malicious data. Drawing 
on generative adversarial networks (GANs) or other deep fake technology, 
this data could fool both machine and human observers. GAN-created data 
inputs coupled with traditional cyber data integrity attacks can introduce 
misleading data into the processing stream and dupe both humans and 
supporting AI systems.   
 
Model Inversion  
 
Can machine learning systems unintentionally reveal secrets? Consider this 
possibility: a machine learning system is training on classified data, perhaps 
for an intelligence analysis task. It is then deployed to a real-world, 
unclassified environment in which it performs this task and analyzes adversary 
activity. By interacting with the machine learning model, subtly changing its 
activity, and using a technique known as model inversion, the adversary may 
be able to deduce key features of the underlying data on which the system 
was trained, essentially gaining access to classified secrets.  
 
Model inversion remains mostly an academic topic according to open 
sources, but it merits further study.14 The risk of machine learning systems 
unwittingly revealing secret information is significant enough to require 
mitigation before systems are deployed to environments with technically 
capable adversaries.  
 
Overarching Questions 
 
Policymakers should consider the degree to which machine learning systems 
in the cybersecurity domain will present overarching questions. These 
challenges will arise from the application of machine learning but are likely to 
be missed by research that is strictly technical in focus. At least five are 
immediately apparent and more will almost certainly follow.  
 
Cyber Accidents  
 
How will machine learning change the risk of accidents in cyber operations? 
The study of “normal accidents” is important in any complex field.15 While it 
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garners a great deal of attention in nuclear strategy, it has received almost 
none in cyber operations. This oversight is surprising, given the good reasons 
to think cyber accidents will occur with regularity. Computer bugs and 
software failures are common enough even for legitimate operators of 
systems and without interference; unexpected operational failures will only 
increase when attackers try to write code that manipulates a system they do 
not understand well.  
 
Notable cyber accidents have likely already occurred. For example, it seems 
probable that the 2017 attack known as WannaCry, carried out by North 
Korean hackers and causing more than $4 billion in damage all over the 
world, was at least partially unintentional. Though designed to act as 
ransomware, the attack contained no mechanism for decrypting files once a 
ransom was paid. The North Koreans may not have understood the power of 
an NSA exploit, ETERNALBLUE, which they repurposed and added to the 
code.16   
 
There are other cases, too. A mysterious attack on a steel plant in Germany in 
2014 was apparently an espionage operation gone wrong. It triggered 
automated shutdown procedures that damaged the facility.17 The 
countrywide outage of Syria’s internet in 2012 was purportedly another 
espionage attempt, this time by the NSA, that inadvertently disabled key 
internet routing functions.18 Stuxnet, the reported U.S. and Israeli attack on 
Iran, propagated far further than intended, eventually turning a covert 
program into one of the most famous cyber operations ever.19 More 
generally, the British signals intelligence agency GCHQ published internally 
a guide entitled, “What’s the Worst That Could Happen?” that has since 
leaked, suggesting that other types of accidents could and likely have 
occurred, hidden only by classification.20  
 
The advent of machine learning in cyber operations seems poised to make 
the risk of cyber accidents worse, not better. While human operators are 
certainly fallible, machine learning systems have particular kinds of failure 
modes that increase the accident risk. Indeed, many past accidents have 
involved an automated component, though not one that used machine 
learning. This reality could well be a harbinger of things to come.  
 
Moreover, at least in the near term, machine learning capabilities will add 
complexity to traditional attack vectors, raising the risks that cyber operators 
may adopt machine learning features without fully understanding their inner 
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workings or potential effects. For example, machine learning systems could 
increase the risk of targeted computer systems causing errant shutdowns, as 
appeared to occur with the German steel mill. Or more automated offensive 
systems may scale up the cost of failures, spreading destructive malicious 
code further than intended, sometimes with substantial consequences, as both 
Stuxnet and WannaCry suggest. Guarding against these accidents—and 
spotting them when they do occur—will be essential.  
 
Influence Campaigns 
 
Can propaganda and influence be automated? There is substantial discussion 
of the role Russian Twitter and Facebook bots played in interfering with the 
2016 election in the United States.21 This terminology obscures the fact that 
people, not code, carried out most of the significant Russian activities; 
however, that might not be true for future operations. If machine learning 
systems can generate realistic and convincing deception campaigns with 
minimal effort, then it stands to reason that they will quickly become an arrow 
in the propagandist’s quiver.  
 
There is good reason to think that such automated deception will soon 
become possible. In 2019, the leading research lab OpenAI announced the 
creation of GPT-2, a tool for generating streams of credible text from any 
given input.22 Upon the release of the tool—which OpenAI delayed because 
of national security concerns related to its underlying power—users from all 
over the world started demonstrating what it could do. They inputted initial 
sentence-length prompts and watched it quickly generate paragraphs of 
mostly credible text. A subsequent study published in Foreign Affairs 
demonstrated the salience for geopolitics; 72 percent of users thought “news” 
stories generated by GPT-2 were credible.23  
 
These tools will require more steering and shaping in order to be useful in 
disinformation campaigns, but further technological development of natural 
language processing systems powered by machine learning seems likely. 
After unveiling GPT-2, OpenAI’s subsequent work showed how the tools 
could respond to human direction in generating text.24 More generally, there 
is ample appetite for what researchers call computational propaganda: the 
use of machines to amplify, scale, and shape information campaigns. 
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Speed  
 
How will machine learning change the speed of cyber operations? Speed 
has long been a central focus for policymakers. Former White House official 
Richard Clarke claimed that “cyberwar happens at the speed of light,” while 
former national security official Joel Brenner contended that, “speed, not 
secrecy, is the coin of the realm.” Former Director of the NSA Keith Alexander 
told Congress that “in terms of…cyberattacks, it is over before you know what 
happened. These happen at lightning speed.” Martin Dempsey, then-
Chairman of the Joint Chiefs of Staff, made the comparison to humans explicit 
when he said that the military must be “able to operate at network speed, 
rather than what I call swivel-chair speed.”25 
 
Each of these individuals, and much of the conventional wisdom to this point, 
likely overstates the speed of cyber operations. Most operations remain 
human-directed and human-conducted, proceeding very much at the swivel-
chair speed sometimes derided by senior officials. Thus far, the process of 
finding and exploiting software vulnerabilities, writing malicious code, 
selecting a target, gaining access to the target via spear-phishing or other 
means, establishing command and control, and moving through the network 
is in most cases a human process, though tools certainly help. Other 
components of cyber operations, such as legal reviews and bureaucratic 
authorizations, are perhaps even slower; they take place at committee speed.  
 
But machine learning may change this dynamic. If, as outlined above, 
machine learning can automate key components of the kill chain, cyber 
operations could proceed much more quickly. If some forms of authority to 
take certain actions can be effectively delegated to the attack code, then 
operations might proceed with less cumbersome oversight and more quickly 
still. In short, machine learning may help enable the operational tempo that 
some policymakers had long imagined.  
 
Offense-Defense Balance 
 
Will machine learning benefit network intruders more than network defenders, 
or vice versa? The question of the offense-defense balance has both 
theoretical and practical relevance. In international relations theory, it is at the 
core of strategic stability, such as in the security dilemma discussed below; 
some argue that the offense-defense balance shapes nations’ decisions to 
initiate conflict.26 In cybersecurity practice, the offense-defense balance is 
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fundamental to the day-to-day business of securing computer networks. It 
shapes which techniques are likely to work on the offensive side and what 
level of capability and effort is required to carry out offensive cyber 
operations.  
 
While theorists are fond of speaking of the offense-defense balance as a 
single variable, it is more accurate to think of it as dyadic, relevant to one 
specific pair of attacker and defender. These dyads can exist at the state 
level—the United States and China, for example—but also at the 
organizational one. Fundamentally, the ability to reap the offensive and 
defensive benefits offered by machine learning will depend on one’s capacity 
to integrate the technology into already-existing procedures, data pipelines, 
and organizational capabilities. Organizations of a specific type, such as 
Wall Street banks spending half a billion dollars per year each on 
cybersecurity, may benefit from defensive cybersecurity advances, while less 
well-resourced organizations may not. The same is true for intruders; 
sophisticated intelligence agencies may be able to craft intricate automated 
tools while others fail to do so. Or the technology may diffuse broadly, 
rendering many of these organizational differences less important and 
leveling the playing field. 
 
In addition, the offense-defense balance might vary depending on the 
objectives of the operation. It may be that some more basic kinds of 
operations are offense-dominant, but that others are defense-dominant; for 
example, machine learning might improve the ability to get access to 
computer systems, but also to detect intrusions, enabling faster efforts but 
making slower-burning campaigns against critical infrastructure much harder. 
In general, treating the offense-defense balance as a single variable in the 
context of machine learning in cybersecurity does not make sense. Much 
more context-specific research is needed to flesh out its complexities.  
 
Proliferation 
 
Are machine learning-enabled cyber capabilities more likely to be leaked, 
lost, or proliferated than previous types of weapons? On one hand, they 
might be more akin to nuclear weapons—espionage has occurred, but has 
never successfully delivered a viable, functioning weapon to a foreign state. 
Or, more likely, they might be more akin to cyber capabilities, which criminal 
groups often use after government hackers discover and deploy them.27 They 
might be so portable as to enable the easy movement of many tools, the way 
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that an unknown group known as the Shadow Brokers proliferated a large 
quantity of NSA secrets.28 Understanding the security and portability of 
machine learning-enabled cyber capabilities is essential for preventing their 
misuse and potentially for generating policy options to shape the proliferation 
or non-proliferation of capabilities.  
 
Related to this central question of proliferation are questions about the role of 
medium-, small-, and non-state actors in the age of AI. The benefits of 
machine learning-enabled cyber capabilities may accrue to nations that are 
the most technologically sophisticated, in the way that only those 
sophisticated nations currently conduct attacks on industrial control systems. 
However, the capabilities may also be used by many states, in the way that 
commodity cyber espionage tools are widely circulated.  
 
Strategic Stability 
 
Will machine learning shape strategic stability in cyber operations? This is 
perhaps the most important emergent and cross-cutting concern. In effect, it is 
the aggregate of the component pieces of this research agenda, plus others 
that are as-yet unknown. Each of the factors outlined above will likely have 
strategic effects, yet what those are and how they interact with one another 
remains uncertain.  
 
Theoretical tools can help guide research into strategic stability, but they are, 
as currently constituted, insufficient. For example, the security dilemma is the 
notion that as one state secures itself it unintentionally threatens other states, 
causing them to take steps to secure themselves and unintentionally 
threatening others. In some form, the security dilemma goes back to the 
ancient Greeks, when the historian Thucydides wrote,  “It was the rise of 
Athens and the fear that this inspired in Sparta that made the Peloponnesian 
war inevitable.”29 Over the millennia since, the security dilemma has been 
formalized and developed, though many of its more-established components 
do not apply well to cyber operations.30 It will likely need still further revision 
to be a useful mechanism for understanding strategic stability in the age of AI.  
 
Other components of the research agenda will shape strategic stability as 
well. The importance of speed could increase the need for quick decisions 
based upon complex and incomplete information, perhaps raising the risk of 
misinterpretation; increased accident risks will make this possibility even more 
dangerous and render interpretation harder still. The growing power and 
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effects of increasingly automated cyber operations might raise the stakes, 
elevating these operations to levels of greater strategic concern. If offense-
defense theory is to be believed, a reshaped balance wrought by machine 
learning will inform the strategic options favored by policymakers, perhaps 
leading to escalation or brinksmanship. The cybersecurity weaknesses of 
machine learning systems themselves, such as their susceptibility to 
adversarial examples, might further enhance their perceived frailty and 
contribute to a sense that policymakers must use them at the dawn of a 
conflict or risk losing them; such concerns about survivability of key systems 
do not augur well for stability.  

On the other hand, machine learning in cyber operations might contribute to 
strategic stability, particularly if it can help defenders more than intruders. If 
broadly enjoyed by all, these defensive capabilities might shift the strategic 
environment so that nations are more secure in their cyber capabilities without 
needing to hack others. The security dilemma suggests that, though unlikely 
(and complicated by the fact that power differentials are likely to be dyadic, 
not global), this scenario would be very stable. More generally, machine 
learning might help to address some of the fundamental problems in 
cybersecurity, from vulnerability discovery during the development process to 
detection of malicious activity once underway. If it did so, it would help 
provide a stability not just geopolitical in nature, but one that extended to the 
technical ecosystem writ large.  

It is important to appreciate the differences between nations in how they 
approach these questions. The American perception of the issues in this 
document, but especially those relating to geopolitical stability, likely diverges 
from the Chinese or Russian perception. Policy-relevant scholarship must 
bridge that gap by spotting areas of difference and potential 
misinterpretation. The national security research agenda for cybersecurity and 
AI is too important to view from just one perspective.  
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