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Introduction and Summary 
 
Artificial intelligence will play an important role in national and international 
security in the years to come. As a result, the U.S. government is considering 
how to control the diffusion of AI-related information and technologies. 
Because general-purpose AI software, datasets, and algorithms are not 
effective targets for controls, the attention naturally falls on the computer 
hardware necessary to implement modern AI systems. The success of modern 
AI techniques relies on computation on a scale unimaginable even a few 
years ago. Training a leading AI algorithm can require a month of computing 
time and cost $100 million. This enormous computational power is delivered 
by computer chips that not only pack the maximum number of transistors—
basic computational devices that can be switched between on (1) and off (0) 
states—but also are tailor-made to efficiently perform specific calculations 
required by AI systems. Such leading-edge, specialized “AI chips” are 
essential for cost-effectively implementing AI at scale; trying to deliver the 
same AI application using older AI chips or general-purpose chips can cost 
tens to thousands of times more. The fact that the complex supply chains 
needed to produce leading-edge AI chips are concentrated in the United 
States and a small number of allied democracies provides an opportunity for 
export control policies. 
 
This report presents the above story in detail. It explains how AI chips work, 
why they have proliferated, and why they matter. It also shows why leading-
edge chips are more cost-effective than older generations, and why chips 
specialized for AI are more cost-effective than general-purpose chips. As part 
of this story, the report surveys semiconductor industry and AI chip design 
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trends shaping the evolution of chips in general and AI chips in particular. It 
also presents a consolidated discussion of technical and economic trends that 
result in the critical cost-effectiveness tradeoffs for AI applications. 
 
In this paper, AI refers to cutting-edge computationally-intensive AI systems, 
such as deep neural networks. DNNs are responsible for most recent AI 
breakthroughs, like DeepMind’s AlphaGo, which beat the world champion 
Go player. As suggested above, we use “AI chips” to refer to certain types of 
computer chips that attain high efficiency and speed for AI-specific 
calculations at the expense of low efficiency and speed for other 
calculations.* 
 
This paper focuses on AI chips and why they are essential for the 
development and deployment of AI at scale. It does not focus on details of the 
supply chain for such AI chips or the best targets within the supply chain for 
export controls (CSET has published preliminary results on this topic1). 
Forthcoming CSET reports will analyze the semiconductor supply chain, 
national competitiveness, the prospects of China's semiconductor industry for 
supply chain localization, and policies the United States and its allies can 
pursue to maintain their advantages in the production of AI chips, 
recommending how this advantage can be utilized to ensure beneficial 
development and adoption of AI technologies. 
 
This report is organized as follows: 
 
Industry Trends Favor AI Chips over General-Purpose Chips 
 
From the 1960s until the 2010s, engineering innovations that shrink 
transistors doubled the number of transistors on a single computer chip 
roughly every two years, a phenomenon known as Moore’s Law. Computer 
chips became millions of times faster and more efficient during this period. 
(Section II.) 
 

 
* Our definition of “AI chips” includes graphics processing units (GPUs), field-programmable 
gate arrays (FPGAs), and certain types of application-specific integrated circuits (ASICs) 
specialized for AI calculations. Our definition also includes a GPU, FPGA, or AI-specific 
ASIC implemented as a core on system-on-a-chip (SoC). AI algorithms can run on other 
types of chips, including general-purpose chips like central processing units (CPUs), but we 
focus on GPUs, FPGAs, and AI-specific ASICs because of their necessity for training and 
running cutting-edge AI algorithms efficiently and quickly, as described later in the paper. 
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The transistors used in today’s state-of-the-art chips are only a few atoms 
wide. But creating even smaller transistors makes engineering problems 
increasingly difficult or even impossible to solve, causing the semiconductor 
industry’s capital expenditures and talent costs to grow at an unsustainable 
rate. As a result, Moore’s Law is slowing—that is, the time it takes to double 
transistor density is growing longer. The costs of continuing Moore’s Law are 
justified only because it enables continuing chip improvements, such as 
transistor efficiency, transistor speed, and the ability to include more 
specialized circuits in the same chip. (Section III and IV.) 
 
The economies of scale historically favoring general-purpose chips like 
central processing units have been upset by rising demand for specialized 
applications like AI and the slowing of Moore’s Law-driven CPU 
improvements. Accordingly, specialized AI chips are taking market share 
from CPUs. (Section V.) 
 
AI Chip Basics 
 
AI chips include graphics processing units (GPUs), field-programmable gate 
arrays (FPGAs), and application-specific integrated circuits (ASICs) that are 
specialized for AI. General-purpose chips like central processing units (CPUs) 
can also be used for some simpler AI tasks, but CPUs are becoming less and 
less useful as AI advances. (Section V(A).) 
 
Like general-purpose CPUs, AI chips gain speed and efficiency (that is, they 
are able to complete more computations per unit of energy consumed) by 
incorporating huge numbers of smaller and smaller transistors, which run 
faster and consume less energy than larger transistors. But unlike CPUs, AI 
chips also have other, AI-optimized design features. These features 
dramatically accelerate the identical, predictable, independent calculations 
required by AI algorithms. They include executing a large number of 
calculations in parallel rather than sequentially, as in CPUs; calculating 
numbers with low precision in a way that successfully implements AI 
algorithms but reduces the number of transistors needed for the same 
calculation; speeding up memory access by, for example, storing an entire AI 
algorithm in a single AI chip; and using programming languages built 
specifically to efficiently translate AI computer code for execution on an AI 
chip. (Section V and Appendix B.) 
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Different types of AI chips are useful for different tasks. GPUs are most often 
used for initially developing and refining AI algorithms; this process is known 
as “training.” FPGAs are mostly used to apply trained AI algorithms to real-
world data inputs; this is often called “inference.” ASICs can be designed for 
either training or inference. (Section V(A).) 
 
Why Cutting-Edge AI Chips are Necessary for AI 
 
Because of their unique features, AI chips are tens or even thousands of times 
faster and more efficient than CPUs for training and inference of AI 
algorithms. State-of-the-art AI chips are also dramatically more cost-effective 
than state-of-the-art CPUs as a result of their greater efficiency for AI 
algorithms. An AI chip a thousand times as efficient as a CPU provides an 
improvement equivalent to 26 years of Moore’s Law-driven CPU 
improvements. (Sections V(B) and VI(A) and Appendix C.) 
 
Cutting-edge AI systems require not only AI-specific chips, but state-of-the-art 
AI chips. Older AI chips—with their larger, slower, and more power-hungry 
transistors—incur huge energy consumption costs that quickly balloon to 
unaffordable levels. Because of this, using older AI chips today means overall 
costs and slowdowns at least an order of magnitude greater than for state-of-
the-art AI chips. (Section IV(B) and VI(A) and Appendix D.) 
 
These cost and speed dynamics make it virtually impossible to develop and 
deploy cutting-edge AI algorithms without state-of-the-art AI chips. Even with 
state-of-the-art AI chips, training an AI algorithm can cost tens of millions of 
U.S. dollars and take weeks to complete. In fact, at top AI labs, a large 
portion of total spending is on AI-related computing. With general-purpose 
chips like CPUs or even older AI chips, this training would take substantially 
longer to complete and cost orders of magnitude more, making staying at the 
research and deployment frontier virtually impossible. Similarly, performing 
inference using less advanced or less specialized chips could involve similar 
cost overruns and take orders of magnitude longer. (Section VI(B).) 
 
Implications for National AI Competitiveness 
 
State-of-the-art AI chips are necessary for the cost-effective, fast development 
and deployment of advanced security-relevant AI systems. The United States 
and its allies have a competitive advantage in several semiconductor industry 
sectors necessary for the production of these chips. U.S. firms dominate AI 
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chip design, including electronic design automation (EDA) software used to 
design chips. Chinese AI chip design firms are far behind and are dependent 
on U.S. EDA software to design their AI chips. U.S., Taiwanese, and South 
Korean firms control the large majority of chip fabrication factories (“fabs”) 
operating at a sufficiently advanced level to fabricate state-of-the-art AI 
chips, though a Chinese firm recently gained a small amount of comparable 
capacity. Chinese AI chip design firms nevertheless outsource manufacturing 
to non-Chinese fabs, which have greater capacity and exhibit greater 
manufacturing quality. U.S., Dutch, and Japanese firms together control the 
market for semiconductor manufacturing equipment (SME) used by fabs. 
However, these advantages could disappear, especially with China’s 
concerted efforts to build an advanced chip industry. Given the security 
importance of state-of-the-art AI chips, the United States and its allies must 
protect their competitive advantage in the production of these chips. Future 
CSET reports will analyze policies for the United States and its allies to 
maintain their competitive advantage and explore points of control for these 
countries to ensure that the development and adoption of AI technologies 
increases global stability and is broadly beneficial for all. (Section VII.) 
 
The Laws of Chip Innovation 
 
All computer chips—including general-purpose CPUs and specialized ones 
like AI chips—benefit from smaller transistors, which run faster and consume 
less energy than larger transistors. Compared to CPUs, AI chips also gain 
efficiency and speed for AI applications through AI-optimized designs. 
However, at least while transistor shrinkage came at a fast rate and produced 
large speed and efficiency gains through the late 2000s, the value of 
specialized designs remained low and CPUs were the dominant chip. 
However, Moore’s Law is close to driving transistors to fundamental size limits 
at atomic scales. For a basic introduction to chips, see Appendix A. 
 
Transistor Shrinkage: Moore’s Law 
 
Moore’s Law states that the number of transistors in a chip doubles about 
every two years. Technical innovations that shrink transistors allow increased 
transistor density. Moore’s Law was first observed in the 1960s, and it held 
until the 2010s, when improvements in transistor density began slowing. 
Today, leading chips contain billions of transistors, but they have 15 times 
fewer transistors than they would have if Moore’s Law had continued.2 
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Transistor density increases occur in generations, or “nodes.” Each node 
corresponds to the transistor size (expressed in terms of length) that allows a 
doubling of transistor density relative to the previous node. Fabs began “risk 
production,” i.e. experimental production, of the latest node of 5 nanometers 
(“nm”) in 2019, with mass production expected in 2020.3 The previous 
leading nodes were 7 nm and 10 nm.4 
 
A companion principle to Moore’s Law says that because smaller transistors 
generally use less power than larger ones, as transistor density increases, 
power consumption per unit chip area remains constant.5 However, transistor 
power reduction rates slowed around 2007.6 
 
Efficiency and Speed Improvements 
 
CPU speed has improved prodigiously since the 1960s due in large part to 
Moore’s Law. Greater transistor density improved speed primarily via 
“frequency scaling,” i.e. transistors switching between ones and zeros faster 
to allow more calculations per second by a given execution unit. Because 
smaller transistors use less power than larger ones, transistor switching speeds 
could be increased without increasing total power consumption.7 Figure 1 
shows transistor density, speed, and efficiency improvements since 1979. 
 
Between 1978 and 1986, frequency scaling drove 22 percent annual 
increases in speed. Then, between 1986 and 2003, speed increased by 52 
percent annually, due to frequency scaling and design improvements 
enabling simultaneous calculations to be performed through parallel 
computing. As frequency scaling slowed, parallelism enabled by multi-core 
designs powered 23 percent annual speedups between 2003 and 2011. 
Exploitation of the final remnants of available CPU parallelism brought 12 
percent annual gains between 2011 and 2015, after which progress on CPU 
speed slowed to three percent per year.8 
 
Efficiency has also improved dramatically. Because decreased transistor size 
reduces power use per transistor, overall CPU efficiency during peak chip 
usage doubled every 1.57 years until 2000.9 Since then, due to the slowing 
of transistor power reduction, efficiency has doubled every 2.6 years, 
equivalent to a 30 percent per year efficiency improvement.10 
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Figure 1: CPU improvement rates normalized relative to 197911 
 

 
 
 

Increasing Transistor Density Unlocks Improved Designs for Efficiency and 
Speed 
 
As transistors shrink and density increases, new chip designs become 
possible, further improving efficiency and speed. First, CPUs can include more 
and different types of execution units optimized for different functions.12 
Second, more on-chip memory can reduce the need for accessing slower off-
chip memory. Memory chips such as DRAM chips likewise can pack more 
memory.13 Third, CPUs can have more space for architectures that implement 
parallel rather than serial computation. Relatedly, if increased transistor 
density enables smaller CPUs, then a single device can house multiple CPUs 
(also called multiple “cores”), which each run different computations at once. 
 
In the 1990s, design improvement lagged behind transistor density 
improvement because chip design firms struggled to exploit design 
possibilities unlocked by rapidly increasing transistor availability.14 To get 
around this bottleneck, design firms focused comparatively more on trailing 
nodes (chips several generations behind the leading-edge), outsourced the 
brute-force work of creating a large number of chip designs to lower-paid 
engineers abroad, reused portions (“IP cores”) of previous designs, and used 
EDA software to translate high-level abstract designs—easier for design 
engineers to work with—into concrete transistor-level designs.15 
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Transistor Design is Reaching Fundamental Size Limits 
 
As transistors have shrunk to sizes only a few atoms thick, they are fast 
approaching fundamental lower limits on size. Various physics problems at 
small scales also make further shrinkage more technically challenging. The 
first significant change arrived in the 2000s when the transistor’s insulative 
layer became so thin that electrical current started leaking across it.16 
Engineers used new, more insulative materials and stopped shrinking the 
insulative layer even as other components continued to shrink.17 
 
More dramatic structural changes followed. From the 1960s to 2011, key 
transistors were manufactured as thin layers stacked on top of each other.18 
Yet even the more insulative materials could not prevent leakage. Instead, 
engineers replaced this planar arrangement with a more complex three-
dimensional structure. This new structure has been dominant from the 22 nm 
node—released in 2011—to the current 5 nm node.19 However, beyond 5 
nm, even this structure leaks. A completely new structure has been developed 
for the future 3 nm node;20 it includes components measuring only a few 
atoms in thickness, making further shrinkage beyond 3 nm challenging.21 
 
The Slowing of Moore’s Law and the Decline of General-Purpose 
Chips 
 
Today, the trends that sustained CPU progress and primacy over specialized 
chips are ending. Technical difficulties are increasing the costs of Moore’s 
Law improvements at a faster rate than the growth of the semiconductor 
market. Ultimately, these economic and technical factors suggest actual 
transistor densities will fall further behind what Moore’s Law predicts and that 
we may reach the point of no further significant improvements in transistor 
densities.22 
 
The Economies of Scale of General-Purpose Chips 
 
The steady improvement in transistor-switching speeds and transistor power 
reduction favored CPUs over specialized chips. In the era of general-purpose 
chip dominance, specialized chips could not generate enough sales volume 
to recoup steep design costs.23 Specialized chips earn their task-specific 
improvements over CPUs from design. But when rapid frequency scaling was 
still producing large speed and efficiency benefits, the computing premium 
from specialized chips was quickly erased by next-generation CPUs, whose 
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costs were spread across millions of chip sales.24 Today, the slowing of 
Moore’s Law means that CPUs no longer quickly improve. This results in 
longer useful lifetimes of specialized chips, making them more economical. 
 
Costs are Increasing Faster than the Semiconductor Market 
 
Increasing technical difficulties at small scales have driven up the costs of 
high-end semiconductor research and development across the supply chain. 
Different sectors of the semiconductor industry have localized in different 
regions based on their comparative advantages.25 
 
The highest-value sectors, particularly SME, fabs, and chip design, have seen 
especially steep rates of cost growth and consolidation.26 Annual growth 
rates in the cost of semiconductor fabrication facilities (eleven percent) and 
design costs per chip (24 percent) are faster than those of the semiconductor 
market (seven percent).27 And the approximate number of semiconductor 
R&D workers has been increasing seven percent per year. 
 
Since the early 2000s, the growth rate of semiconductor fabrication costs, 
including costs of fabs and SME, has trended at 11 percent per year. Fixed 
costs increasing faster than variable costs has created higher barriers of entry, 
squeezing fab profits and shrinking the number of chipmakers operating fabs 
at the leading nodes.28 Figure 2 shows increasing construction costs of the 
largest fabs owned by Taiwan Semiconductor Manufacturing Company 
(TSMC). Currently, there are only two chipmakers at the 5 nm node: TSMC in 
Taiwan and Samsung in South Korea. Intel follows at 10 nm with plans to 
introduce the 7 and 5 nm nodes; GlobalFoundries and Semiconductor 
Manufacturing International Corporation (SMIC) lag at 14 nm (see Table 
1).29 
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Figure 2: TSMC’s leading-edge fab costs30 
 

 
 

Costs of photolithography tools, the most expensive and complex segment of 
SME, have risen from $450,000 per unit in 1979 to $123 million in 2019.31 
And only one photolithography company, ASML in the Netherlands, now 
sells photolithography equipment capable of manufacturing the smallest 5 nm 
transistors. Nikon in Japan is the only other company making a significant 
volume of photolithography tools that operate at ≤90 nm (see Table 1). 
Eventually, increasing research and development costs for photolithography 
equipment and fabs at the leading node may prevent even a natural 
monopoly from recouping costs from the slowly growing global 
semiconductor market. 
 

Table 1: Number of companies at each node 
 

Node (nm) 180 130 90 65 45/ 
40 

32/ 
28 

22/ 
20 

16/ 
14 

10 7 5 

Year mass 
production 

1999 2001 2004 2006 2009 2011 2014 2015 2017 2018 2020 

Chipmakers32 94 72 48 36 26 20 16 11 5 3 3 

Photolithography 
companies33 

4 3 2 2 2 2 2 2 2 2 1 
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Meanwhile, as shown in Figure 3, multiple estimates suggest the cost of chip 
design has been rising exponentially. When matched with TSMC’s node 
introduction dates, design costs per node according to International Business 
Strategies (IBS) yields a 24 percent yearly cost increase.34 Due to their 
general-purpose usage, CPUs enjoy economies of scale enabling U.S. firms 
Intel and AMD to maintain a decades-long duopoly in CPU design for servers 
and personal computers (PCs), such as desktops and laptops.35 
 

Figure 3: Chip design costs at each node36 
 

 
 

As semiconductor complexity increases, demands for high-end talent drive 
design and fabrication cost overruns. The effective number of researchers, 
measured by dividing semiconductor R&D spending by wages of high-skilled 
workers, saw an 18x increase from 1971 to 2015.37 Put another way, a 
Moore’s Law doubling required eighteen times as much human research 
effort in 2015 than in 1971, representing a seven percent increase per 
year.38 
 
Overall design and manufacturing cost per transistor may be the best metric 
to measure whether transistor density improvements remain economical. This 
cost has historically decreased by around 20-30 percent annually.39 Some 
analysts claim that decreases have stopped past the 28 nm node introduced 
in 2011, while others disagree.40 
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The Semiconductor Industry’s Growth Rate is Unlikely to Increase 
 
Unless new chip applications cause growth rates to increase, the 
semiconductor industry is unlikely to see growth rates sufficient to 
accommodate the industry’s increasing costs. The semiconductor market is 
already growing at a faster rate than the world economy’s three percent rate. 
Currently, the semiconductor industry produces 0.5 percent of global 
economic output. Due in part to the trade war between the United States and 
China, the semiconductor market shrunk in 2019.41 However, it typically 
exhibits a year-to-year sawtooth growth trajectory, so a multi-year slowing 
would better indicate a slowing in long-run growth.42 
 
Chip Production at Each Node 
 
Given the technical and economic challenges of chip production, new nodes 
are being introduced more slowly than in the past. Intel, the standard bearer 
of Moore’s Law, has indeed slowed node introduction. It introduced 32 and 
22 nm nodes two years after their predecessors, consistent with Moore’s Law, 
but 14 nm followed three years after 22 nm, and 10 nm four years after 14 
nm node chips.43 Yet the leading foundry services vendor, TSMC, has not 
slowed node introduction.44 
 
Trends in leading node chip sales volumes do not yet suggest a major slowing 
in the adoption of new nodes. From 2002 to 2016, TSMC’s leading node 
stably represented approximately 20 percent of its revenue.45 TSMC's 10 nm 
and 7 nm nodes introduced in 2016 and 2018, respectively, also reached 
25 percent and 35 percent respectively, as shown in Figure 4. 
 
TSMC’s stable sales rates of new nodes—though slower than in the early 
2000s—may mask the fact that the foundry services market as a whole is 
slowing adoption. TSMC has controlled roughly half of the world’s foundry 
services market share for the last decade.46  Rising production costs are 
reducing the number of companies at the leading node. For example, during 
this time, GlobalFoundries dropped out by failing to progress beyond 14 nm. 
If this trend is accompanied by less fab capacity at the current leading node 
than was the case for previously leading nodes, it would indicate that 
Moore’s Law is slowing.47 
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Figure 4: TSMC’s rate of introduction and adoption of new nodes has 
remained stable48 

 

 
 

Fabs still make chips at the old nodes shown in Figure 4 for several reasons. 
Fabs incur great costs to build leading fabs or upgrade old ones to 
manufacture chips at newer nodes, so immediately transitioning world fab 
capacity to leading nodes is not possible. Instead, fabs continue selling old 
nodes at lower prices, especially to customers for whom purchase cost is the 
primary criterion. Many of these customers may be less concerned about 
efficiency because their applications are not computationally intensive. 
Similarly, their applications may not require fast speeds or otherwise may 
complete computations fast enough on old chips. Additionally, some 
specialized low-volume products like analog chips require trailing nodes to 
remain cost-effective.49 
 
Chip Improvements as Moore’s Law Slows 
 
As Moore’s Law slows, chips continue to improve in two ways: efficiency and 
speed improvements of smaller transistors, and efficiency and speed 
improvements from advanced chip designs exploiting larger numbers of 
transistors per chip enabled by smaller transistor size. These advanced 
designs include the ability to pack more specialized cores on a single chip.50 
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Transistor Improvements Continue, but are Slowing 
 
Fortunately, some speed and efficiency improvements are still available, but 
with considerable technical challenges. Around 2004, when the 65 nm node 
was reached, transistor density improvements slowed in reducing transistor 
power usage and increasing transistor switching speed (frequency scaling).51 
Nevertheless, fabs report that transistor-level rather than design-level 
innovation continues to provide consistent, albeit slowing, improvements from 
node to node. TSMC and Samsung claim their 5 nm node chips improve 
upon the transistor speed of their 7 nm node chips respectively by 15 and 10 
percent with power usage held constant52 and reduce power usage by 30 
and 20 percent with transistor speed held constant.53 Figures 5 and 6 show a 
downward trend in TSMC’s claimed node-to-node transistor speed 
improvements at constant efficiency between 90 nm and 5 nm, but a flat trend 
in TSMC’s claimed transistor power reduction improvements.54 Samsung 
trends downward between 14 nm and 5 nm on both metrics, but we lack 
data at nodes larger than 14 nm.55 Intel sees slightly dropping transistor 
speed improvements,56 but continuing node-to-node transistor power 
reduction improvements from 65 nm to 10 nm.57 Intel has not yet introduced 
its 7 nm node. These improvements in speed and efficiency benefit both 
general-purpose chips like CPUs and specialized chips like AI chips.58 
 

Figure 5: Node-to-node transistor speed improvements 
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Figure 6: Node-to-node transistor power reduction improvements 
 

 
 

Chip design improvements now provide decreasing CPU efficiency and 
speed improvements. Figure 7 consolidates the speed and efficiency 
measurements by node, both for CPUs and for transistors. For CPUs, we use 
data from Figure 1. For transistors, we use data for TSMC’s and Intel’s nodes 
from Figures 5 and 6.59 The sources roughly agree on speed and efficiency 
improvements. TSMC’s and Intel’s reported improvements, derived from 
transistor-level innovation, generally match CPU improvements derived from 
both transistor-level and design-level innovation. The rough match implies that 
transistor-level innovation60 has continued to play a major role in CPU 
efficiency and speed improvements over the last 15 years,61 at least for the 
measured CPU benchmarks.62 Efficient designs, however, do still play a 
role.63 
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Figure 7: Measured efficiency and speed improvements against 90 nm 
node 

 

 
 
 

Improved Transistor Density Enables Specialization 
 
Besides improving transistor function, increasing transistor density enables 
chips to include more varieties of specialized circuits that perform different 
types of calculations.64 A chip can call upon a different specialized circuit 
depending on which calculation is requested. These circuits can include some 
optimized for AI algorithms and others specialized for different types of 
calculations. AI chips, which will be discussed in section V, are chips entirely 
specialized for AI. 
 
Outside of the use of these specialized circuits, in recent years there has been 
little left to gain by adding more transistors to general-purpose chips. More 
transistors could theoretically enable a CPU to include more circuits to 
perform a larger number of calculations in parallel. However, speedups from 
parallelism are commonly limited by the percentage of time spent on serial 
computations, computations performed one after the other because the result 
of one computation is needed to start another. Parallel computations, 
conversely, are performed simultaneously. Even when only one percent of an 
algorithm’s calculation time requires serial calculations, 45 percent of 
processor energy is wasted.65 Unfortunately, most applications require at 
least some serial computation, and processor energy waste becomes too high 
as the serialization percentage increases. As other design improvements have 
slowed since the mid-2000s, multi-core designs with ever larger numbers of 
cores have proliferated. But multi-core designs also cannot efficiently 
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parallelize algorithms requiring a significant percentage of time spent on 
serial computations. 
 
The AI Chip Zoo 
 
The trend toward chips specialized for AI applications is driven by two 
factors. First, as discussed in Section IV, the critical improvements in 
semiconductor capabilities have shifted from manufacturing to design and 
software.66 Second, an increasing demand for applications like AI requires 
highly parallelizable, predictable computations that benefit from specialized 
chips.67 Deep neural networks (DNNs)—AI algorithms responsible for most 
recent AI breakthroughs—fit this bill. DNNs usually implement a type of 
machine learning called supervised learning, which involves two computing 
steps: “training” an AI algorithm based on training data (i.e. building the 
algorithm) and executing the trained AI algorithm (i.e. performing 
“inference”) to classify new data consistent with knowledge acquired from 
data in the training stage. The training step in particular often requires 
performing the same computation millions of times. As discussed in Section 
IV(B), improved transistor density allows more types of specialized circuits on 
a single chip. AI chips take this to the extreme—the layout of most or all 
transistors on the chip is optimized for the highly parallelizable, specialized 
computations required by AI algorithms. 
 
Although analysts disagree widely on the size of the global AI chip market—
2018 estimates ranged between $5 and $20 billion—they agree that the 
market will grow faster than for chips not specialized for AI.68 Until recently, a 
small number of firms designing general-purpose chips like CPUs dominated 
the logic chip design market. They enjoyed economies of scale that enabled 
them to reinvest into powerful new CPU designs. However, the slowing of 
Moore’s Law is damaging CPU producers’ economies of scale; now 
specialized chips have longer useful lifetime before Moore’s Law-driven CPU 
efficiency and speed gains overcome the benefits of specialized chips. 
Therefore, the ability of CPU design firms to reinvest in new designs to 
maintain market dominance is declining. This trend lowers barriers to entry for 
chip design startups—especially those focused on specialized chips.69 
 
AI chips are a common type of specialized chip, and share some features in 
common. AI chips execute a much larger number of calculations in parallel 
than CPUs. They also calculate numbers with low precision in a way that 
successfully implements AI algorithms but reduces the number of transistors 
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needed for the same calculation. They also speed up memory access by 
storing an entire AI algorithm in a single AI chip. Finally, AI chips use 
programming languages specialized to efficiently translate AI computer code 
to execute on an AI chip. For more detail on these techniques, see Appendix 
B. 
 
While general-purpose chips include a small number of popular designs, 
particularly the CPU, AI chips are more diverse. AI chips vary widely in 
design, the applications they are suited to, efficiency and speed for different 
AI tasks, generality, and classification accuracy when performing inference. 
The following subsections categorize AI chips along these axes. 
 
AI Chip Types 
 
AI chips include three classes: graphics processing units (GPUs), field-
programmable gate arrays (FPGAs), and application-specific integrated 
circuits (ASICs).70 
 
GPUs were originally designed for image-processing applications that 
benefited from parallel computation. In 2012, GPUs started seeing increased 
use for training AI systems and by 2017, were dominant.71 GPUs are also 
sometimes used for inference.72 Yet in spite of allowing a greater degree of 
parallelism than CPUs, GPUs are still designed for general-purpose 
computing.73 
  
Recently, specialized FPGAs and ASICs have become more prominent for 
inference, due to improved efficiency compared to GPUs.74 ASICs are 
increasingly used for training, as well.75 FPGAs include logic blocks (i.e. 
modules that each contain a set of transistors) whose interconnections can be 
reconfigured by a programmer after fabrication to suit specific algorithms, 
while ASICs include hardwired circuitry customized to specific algorithms. 
Leading ASICs typically provide greater efficiency than FPGAs, while FPGAs 
are more customizable than ASICs and facilitate design optimization as AI 
algorithms evolve.76 ASICs, by contrast, grow increasingly obsolete as new AI 
algorithms are developed. 
 
Different AI chips may be used for training versus inference, given the various 
demands on chips imposed by each task. First, different forms of data and 
model parallelism are suitable for training versus inference, as training 
requires additional computational steps on top of the steps it shares with 
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inference. Second, while training virtually always benefits from data 
parallelism, inference often does not. For example, inference may be 
performed on a single piece of data at a time. However, for some 
applications, inference may be performed on many pieces of data in parallel, 
especially when an application requires fast inference of a large number of 
different pieces of data. Third, depending on the application, the relative 
importance of efficiency and speed for training and inference can differ. For 
training, efficiency and speed are both important for AI researchers to cost-
effectively and quickly iterate research projects. For inference, high inference 
speed can be essential, as many AI applications deployed in critical systems 
(e.g. autonomous vehicles) or with impatient users (e.g. mobile apps 
classifying images) require fast, real-time data classification. On the other 
hand, there may be a ceiling in useful inference speed. For example, 
inference need not be any faster than user reaction time to a mobile app.77 
 
Inference chips require fewer research breakthroughs than training chips, as 
they require optimization for fewer computations than training chips. And 
ASICs require fewer research breakthroughs than GPUs and FPGAs; because 
ASICs are narrowly optimized for specific algorithms, design engineers 
consider far fewer variables. To design a circuit meant for only one 
calculation, an engineer can simply translate the calculation into a circuit 
optimized for that calculation. But to design a circuit meant for many types of 
calculations, the engineer must predict which circuit will perform well on a 
wide variety of tasks, many of which are unknown in advance. 
 
An AI chip’s commercialization has depended on its degrees of general-
purpose capability. GPUs have long been widely commercialized, as have 
FPGAs to a lesser degree.78 Meanwhile, ASICs are more difficult to 
commercialize given high design costs and specialization-driven low volume. 
However, a specialized chip is relatively more economical in an era of slow 
general-purpose chip improvement rates, as it has a longer useful lifetime 
before next-generation CPUs attain the same speedup or efficiency. In the 
current era of slow CPU improvements, if an AI chip exhibits a 10-100x 
speedup, then a sales volume of only 15,000-83,000 should be sufficient to 
make the AI chip economical.79 The projected market size increase for AI 
chips could create the economies of scale necessary to make ever narrower-
capability AI ASICs profitable. 
 
AI chips come in different grades, from more to less powerful. At the high-
end, server grade AI chips are commonly used in data centers for high-end 
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applications and are, after packaging, larger than other AI chips. At the 
medium-end are PC grade AI chips commonly used by consumers. At the 
low-end, mobile AI chips are typically used for inference and integrated into 
a system-on-a-chip that also includes a CPU. A mobile system-on-a-chip 
needs to be miniaturized to fit into mobile devices. At each of these grades, AI 
chip market share increases have come at the expense of non-AI chips.80 
 
Supercomputers have limited but increasing relevance for AI. Most 
commonly, server grade chips are distributed in data centers and can be 
executed sequentially or in parallel in a setup called “grid computing.” A 
supercomputer takes server grade chips, physically co-locates and links them 
together, and adds expensive cooling equipment to prevent overheating. This 
setup improves speed but dramatically reduces efficiency,81 an acceptable 
tradeoff for many applications requiring fast analysis. Few current AI 
applications justify the additional cost of higher speed, but training or 
inference for large AI algorithms is sometimes so slow that supercomputers 
are employed as a last resort.82 Accordingly, although CPUs have 
traditionally been the supercomputing chip of choice,83 AI chips are now 
taking an increasing share.84 In 2018, GPUs were responsible for the 
majority of added worldwide supercomputer computational capacity.85 
 
AI Chip Benchmarks 
 
There is no common scheme in the industry for benchmarking CPUs versus AI 
chips, as comparative chip speed and efficiency depends on the specific 
benchmark.86 However, for any given node, AI chips typically provide a 10-
1,000x improvement in efficiency and speed relative to CPUs, with GPUs and 
FPGAs on the lower end and ASICs higher.87 An AI chip 1,000x as efficient 
as a CPU for a given node provides an improvement equivalent to 26 years 
of CPU improvements. Table 2 shows our estimates for efficiency and speed 
gains for GPUs, FPGAs, and ASICs relative to CPUs (normalized at 1x) for 
DNN training and inference at a given node. No data is available for FPGA 
training efficiency and speed, as FPGAs are rarely used for training. These 
estimates are informed by benchmarking studies, which are summarized in 
Appendix B. Table 2 also lists the generality and inference accuracy of these 
chips. 
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Table 2: Comparing state-of-the-art AI chips to state-of-the-art CPUs 
 

 Training Inference Generality88 Inference 

accuracy89 

Efficiency Speed Efficiency Speed 

CPU 1x baseline Very High ~98-99.7% 

GPU ~10-100x ~10-1,000x ~1-10x ~1-100x High ~98-99.7% 

FPGA - - ~10-100x ~10-100x Medium ~95-99% 

ASIC ~100-1,000x ~10-1,000x ~100-1,000x ~10-1,000x Low ~90-98% 

 
 

The Value of State-of-the-Art AI Chips 
 
Leading node AI chips are increasingly necessary for cost-effective, fast 
training and inference of AI algorithms. This is because they exhibit efficiency 
and speed gains relative to state-of-the-art CPUs (Table 2 and Appendix C) 
and trailing node AI chips (Figure 7). And, as discussed in subsection A, 
efficiency translates into overall cost-effectiveness in chip costs—which are the 
sum of chip production costs (i.e. design, fabrication, assembly, test, and 
packaging costs). Finally, as discussed in subsection B, cost and speed 
bottleneck training and inference of many compute-intensive AI algorithms, 
necessitating the most advanced AI chips for AI developers and users to 
remain competitive in AI R&D and deployment. 
 
The Efficiency of State-of-the-Art AI Chips Translates into Cost-Effectiveness 
 
Efficiency translates into overall cost-effectiveness. For trailing nodes, chip 
operating costs—due to energy consumption costs—dominate chip 
production costs and quickly balloon to unmanageable levels. Even for 
leading nodes, operating costs are similar to production costs, implying the 
need to continue optimizing for efficiency.  
 
Table 3 presents the results of a CSET model of chip production and 
operating costs for nodes between 90 and 5 nm with the same number of 
transistors as a generic server-grade 5 nm chip modeled according to the 
specifications similar to those of the Nvidia P100 GPU. This means that an 
above-5 nm chip would require a larger surface area. For above-5 nm 
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nodes, the model could equivalently be interpreted as accounting for 
production of multiple chips that together have the transistor count of one 5 
nm chip. The model takes the perspective of a fabless design firm that, in 
2020, designs the chip, buys foundry services from TSMC, then runs the chip 
in its own server. This mirrors the approach of companies like Google, which 
designs its TPU in-house, outsources fabrication to TSMC, then runs its TPUs in 
Google servers for its own AI applications or cloud-computing services to 
external customers. 
 
The costs break down as follows. The foundry sale price paid by the fabless 
firm includes capital consumed (i.e. costs of building a fab and purchasing 
SME), materials, labor, foundry R&D, and profit margin. The fabless firm 
additionally incurs chip design cost. After fabrication, an outsourced 
semiconductor and test firm assembles, tests, and packages (ATP) the chip. 
The sum of foundry sale price, chip design cost, and ATP cost equals the total 
production cost per chip. The fabless firm also incurs energy cost when 
operating the chip. We estimate energy cost based on an electricity cost of 
$0.07625 per kilowatt-hour. See Appendix D for explanations of how each 
line-item in Table 3 is calculated. We make two findings. 
 

Table 3: Chip costs at different nodes with 5 nm-equivalent transistor 
count 

 

Node (nm) 90 65 40 28 20 
16/ 
12 10 7 5 

Year of mass production 2004 2006 2009 2011 2014 2015 2017 2018 2020 

Foundry sale price to fabless firm per 
chip (i.e. costs + markup) $2,433 $1,428 $713 $453 $399 $331 $274 $233 $238 

Fabless firm’s design cost per chip given 
chip volume of 5 million90 $630 $392 $200 $135 $119 $136 $121 $110 $108 

Assembly, test, and packaging cost per 
chip $815 $478 $239 $152 $134 $111 $92 $78 $80 

Total production cost per chip $3,877 $2,298 $1,152 $740 $652 $577 $487 $421 $426 

Annual energy cost to operate chip $9,667 $7,733 $3,867 $2,320 $1,554 $622 $404 $242 $194 

 
 

First, in less than two years, the cost to operate a leading node AI chip (7 or 5 
nm) exceeds the cost of producing said chip, while the cumulative electricity 
cost of operating a trailing node AI chip (90 or 65 nm) is three to four times 
the cost of producing that chip.91 Figure 8 presents total chip costs for 
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continuous use up to three years: total production cost per chip is added in 
year zero, with annual energy cost of using the chip added in each 
subsequent year. These results suggest that leading node AI chips are 33 
times more cost-effective than trailing node AI chips when counting 
production and operating costs. Likewise, because leading node AI chips 
exhibit one to three orders of magnitude greater efficiency than leading node 
CPUs (Table 2 and Appendix C), we expect leading node AI chips are also 
one to three orders of magnitude more cost-effective than leading node CPUs 
when counting production and operating costs. 
 

Figure 8: Cost of AI chips over time for different nodes 
 

 
 

Second, it takes 8.8 years for the cost of producing and operating a 5 nm 
chip to equal the cost of operating a 7 nm chip.92 Below 8.8 years, the 7 nm 
chip is cheaper, and above, the 5 nm chip cheaper. Therefore, users have an 
incentive to replace existing 7 nm node chips (assuming they do not break 
down) only when expecting to use 5 nm node chips for 8.8 years. Figure 9 
shows node-to-node comparisons between 90 nm and 5 nm. We find that 
the timeframe where these costs become equal has increased, with a 
dramatic rise at the 7 versus 5 nm comparison.93 Firms typically replace 
server-grade chips after about three years of operation, which is consistent 
with recent timeframes for introduction of new nodes—that is, firms relying on 
leading node chips purchase newly introduced node chips as soon as they 
are available. However, if firms begin purchasing 5 nm node chips, they may 
expect to use these chips for much longer.94 This would constitute a market 
prediction that Moore’s Law is slowing, and that the 3 nm node may not be 
introduced for a long time.95 
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Figure 9: Node transition economics 
 

 
 

Compute-Intensive AI Algorithms are Bottlenecked by Chip Costs and Speed 
 
AI firms’ time and money spent on AI-related computing have become a 
bottleneck on AI progress. Given leading node AI chips are vastly more cost-
effective and faster (Table 4 and Figure 7) than trailing node AI chips or 
leading node CPUs, these AI labs therefore need leading node AI chips to 
continue AI progress. 
 
First, training costs of AI lab DeepMind’s leading AI experiments, such as 
AlphaGo, AlphaGo Zero, AlphaZero, and AlphaStar, have been estimated 
at $5 to $100 million each.96 One cost model suggests AlphaGo Zero’s 
training cost was $35 million.97,98 AI lab OpenAI reports that of their $28 
million total 2017 costs, $8 million went to cloud computing.99 Multiplying 
these computing costs by thirty for trailing node AI chips, or even more for 
leading node CPUs, would make such experiments economically prohibitive. 
And computing costs for some AI companies have increased so quickly that a 
cost ceiling may soon be reached, necessitating the most efficient AI 
chips.100,101 
 
Second, leading AI experiments can take days or even a month for 
training,102 while deployed critical AI systems routinely require fast or real-
time inference. Increasing these times by using trailing node AI chips or 
leading node CPUs would make the required iteration speed for AI R&D and 
inference speed of deployed critical AI systems unacceptably slow. A 
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company with slower chips could attempt to pay the enormous energy costs 
to increase speed by using large numbers of slower chips in parallel. But this 
gambit would fail for two reasons. For one, as discussed in Section A of 
Appendix A, leading experiments require AI researchers to tune AI algorithms 
to support more data and model parallelism. AI researchers can do this to a 
limited degree, but may face difficulty if attempting to use a dramatically 
greater number of AI chips in parallel than currently used by leading AI 
experiments. For another, even if algorithmically possible, such parallelism 
requires complementary software and networking technology to enable it.103 
Scaling up hundreds or thousands of GPUs in parallel is extremely difficult.104 
Scaling up an even larger number of trailing node GPUs would likely be 
beyond current capabilities. The new Cerebras Wafer Scale Engine chip 
presents an intriguing potential workaround to networking technology. It is the 
first wafer-scale chip, having a much larger surface area than any other AI 
chip, meaning a large degree of parallelism can be accomplished on a single 
chip, reducing the need for advanced networking technology between 
multiple chips.105 
 
A caveat to this analysis is that some recent AI breakthroughs have not 
required a significant amount of computing power.106 Furthermore, there is 
ongoing research in developing AI algorithms requiring minimal training (e.g. 
“few shot” learning techniques).107  For these AI algorithms, multiplying a 
small cost or speed by a large number may still yield a small cost or speed. 

U.S. and Chinese AI Chips and Implications for National 
Competitiveness 
 
Cost-effectiveness and speed of leading node AI chips matter from a policy 
perspective. U.S. companies dominate AI chip design, with Chinese 
companies far behind in AI chip designs, reliant on U.S. EDA software to 
design AI chips, and needing U.S. and allied SME and fabs to fabricate AI 
chips based on these designs. The value of state-of-the-art AI chips, 
combined with the concentration of their supply chains in the United States 
and allied countries, presents a point of leverage for the United States and its 
allies to ensure beneficial development and adoption of AI technologies.108 
 
U.S. companies Nvidia and AMD have a duopoly over the world GPU 
design market, while China’s top GPU company, Jingjia Microelectronics, 
fields dramatically slower GPUs.109 Likewise, U.S. companies Xilinx and Intel 
dominate the global FPGA market, while China’s leading FPGA companies 
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Efinix, Gowin Semiconductor, and Shenzhen Pango Microsystem have only 
developed trailing node FPGAs thus far.110 
 
The AI ASIC market, especially for inference, is more distributed with lower 
barriers to entry, as ASICs and inference chips are easier to design (see 
Section VI(A)). Unlike GPUs and FPGAs, companies active in AI such as 
Google, Tesla, and Amazon have begun designing AI ASICs specialized for 
their own AI applications. Google’s TPU is a leading commercial AI ASIC.111 
Intel is also developing powerful commercial AI ASICs,112 and claims even 
greater improvements for research ASICs in the range of 10,000x and 
1,000x for efficiency and speed respectively.113 Competitive Chinese 
companies in the AI ASIC space include Baidu, Alibaba, Tencent, HiSilicon 
(owned by Huawei), Cambricon Technologies, Intellifusion, and Horizon 
Robotics. Chinese researchers have also produced high-end research 
ASICs.114 However, they are largely limited to inference, although Huawei 
recently announced the development of an AI training ASIC.115 
 
Table 4 lists world-leading server grade U.S. AI chip designs alongside 
leading Chinese counterparts.116,117 The data tells two stories. 
 

Table 4: Leading U.S. and Chinese AI chips 
 

Type Firm HQ Design firm AI chip Node (nm) Fab 

GPU United 
States 

AMD118 Radeon Instinct 7 TSMC 

Nvidia119 Tesla V100 12 TSMC 

China Jingjia Micro120 JM7200 28 Unknown 

FPGA United 
States 

Intel121 Agilex 10 Intel 

Xilinx122 Virtex 16 TSMC 

China Efinix123 Trion 40 SMIC 

Gowin Semiconductor124 LittleBee 55 TSMC 

Shenzhen Pango125 Titan 40 Unknown 

ASIC United 
States 

Cerebras126 Wafer Scale Engine 16 TSMC 

Google127 TPU v3 16/12 (est.) TSMC 

Intel128 Habana 16 TSMC 
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Tesla129 FSD computer 10 Samsung 

China Cambricon130 MLU100 7 TSMC 

Huawei131 Ascend 910 7 TSMC 

Horizon Robotics132 Journey 2 28 TSMC 

Intellifusion133 NNP200 22 Unknown 

 
 

First, Table 4 shows that U.S. AI chip design firms fab exclusively at TSMC, 
Samsung, or Intel, with chips either at the leading commercial node (7 nm) or 
close behind. U.S. GPUs use more leading nodes than U.S. FPGAs and 
ASICs—possibly due to their generality and therefore higher sales volumes 
that recoup higher leading node design costs.134 
 
Experts disagree on the need for leading nodes for AI chips. An executive of 
the EDA company Cadence Design Systems said, "everybody who wants to 
do AI needs the performance, power and form factor of 7nm and below.”135 
Meanwhile, a semiconductor researcher at Hong Kong Applied Science and 
Technology Institute was more skeptical: “For AI chips … manufacturing costs 
will be much lower if you use 28nm technology and not 10 or 14nm tech … 
you need to spend a lot of effort from scratch [to design at leading nodes]—
mathematical models, the physical layers, the computational language, all 
these need investment.”136 
 
The data in Table 4 settles this question: near-leading-edge nodes (i.e. ≤16 
nm) are used for all of the leading U.S. AI chips we investigated. This data is 
consistent with the CSET chip economics model discussed in Section VI(A). 
Specifically, the model’s results in Figure 8 show an especially high cost-
effectiveness for chips at ≤16 nm, with ≥20 nm having much higher costs. 
 
Few fabs are capable of manufacturing near-state-of-the-art AI chips, as 
shown in Figure 10. Only approximately 8.5% of global fab capacity could 
be used to fabricate near-state-of-the-art AI chips, and only a subset is 
currently used for it. The actual percentage used to fabricate near-state-of-
the-art AI chips is difficult to calculate and varies year-to-year. 
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Figure 10: Near-state-of-the-art AI chips comprise a small percentage of 
all chips137 

 
Red intersection: chip fab capacity capable of making near-state-of-the-art 

AI chips 
Blue circle: chip fab capacity actually used to make near-state-of-the-art AI 

chips 
 

 

Second, Table 4 shows that Chinese AI chip design firms use trailing nodes 
for GPUs and FPGAs, and a mix of leading nodes and trailing nodes for 
ASICs. Even though China has some local fabrication capacity at a number 
of these trailing nodes, China’s AI chip design firms still mostly outsource 
fabrication of trailing node chips to the Taiwanese fab TSMC. This likely 
reflects TSMC’s more reliable fabrication processes than those of Chinese 
domestic fabs like SMIC. SMIC has capacity as advanced as 14 nm, but only 
at a low volume.138 Some of these chip design firms do use SMIC, but SMIC 
relies on SME imports from the United States, the Netherlands, and Japan. 
This is because China’s SME industry includes only a small number of 
companies that are not at the state-of-the-art.139 Chinese AI chip design firms 
also rely on U.S. EDA software to design their AI chips. Therefore, China 
remains dependent on the United States and its allies for AI chip production 
capabilities. 
 
China has achieved the most design success in AI inference ASICs, as its 
large and well-educated population of engineers is well-suited to the labor-
intensive work of designing a chip that performs extremely well on a specific 



 
 

Center for Security and Emerging Technology | 31 
 

task.140 However, given China’s relatively young AI chip design industry, 
Chinese companies have yet to acquire the implicit know-how needed to 
navigate the large optimization space and higher complexity of mastering 
GPUs and FPGAs. 
 
Chinese companies also heavily incorporate Western IP cores into their 
designs. For example, Huawei licenses British chip design firm ARM’s 
instruction set architecture and IP cores.141 Chinese FPGA makers also license 
Intel and Xilinx FPGA IP cores.142 Licenses for IP cores become exponentially 
more expensive at leading nodes.143 
 
China’s lack of development in key sectors of AI chip supply chains—
including AI chip designs, EDA software, SME, and fabs—means the United 
States and its allies maintain a competitive advantage in the production of 
leading-edge AI chips. As discussed in Section VII, leading-edge AI chips 
have critical strategic value for the development and deployment of 
advanced security-relevant AI systems. Therefore, it is vital to U.S., allied, and 
global security to maintain this advantage. 
 
Future CSET reports will more deeply analyze AI chip industry 
competitiveness of the United States and China, China’s semiconductor 
industry and its plans for chip independence and supply chain localization, 
and recommend policies the United States and its allies should pursue to 
maintain their advantages in the production of AI chips. 
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Appendix A: Basics of Semiconductors and Chips 
 
A semiconductor is a material with an electrical conductivity between that of 
a conductor, which allows the flow of electrical current, and an insulator, 
which does not. A semiconductor can switch between being conductive and 
insulative in different circumstances. Silicon is the most commonly used 
semiconductor. Semiconductors are used in a wide array of devices, such as 
transistors, resistors, capacitors, and diodes, each of which perform distinct 
functions. These devices can be manufactured separately as “discrete” 
devices or multiple devices can be combined into an integrated circuit, also 
called a “chip.” 
 
Transistors are especially important devices for computing, as they can be 
switched between on and off states representing 1 and 0. The metal-oxide-
semiconductor field-effect transistor (MOSFET) has been the dominant 
transistor type since the 1960s. The name is explanatory: a MOSFET includes 
an insulator (e.g. an oxide) between a gate (e.g. a conductive metal) and a 
semiconductor channel (e.g. silicon144) that connects a source and a drain 
(see Figure 11). When a voltage (i.e. an electric field) is applied to the gate, 
the channel is put in an “on” state so that current flows between the source 
and the drain. When voltage is not applied, the channel is put in an “off” state 
such that current does not flow between the source and the drain. 
 
The structure of a chip includes a “front-end” and “back-end.” The front-end 
has silicon layers embedded with electrical devices such as transistors. The 
back-end sits on top of the front-end and consists of layers formed of 
insulators through which conductive metal wires called interconnects connect 
the electrical devices of the front-end (see cross-sectional side view in Figure 
11).145 Different combinations of transistors and other electrical devices, 
wired in particular ways, create various types of “logic gates,” which perform 
basic logical operations. Seven basic logic gates serve as building blocks to 
create larger “execution units,” which implement any desired computation.146 
“Chip design” refers to the layout and structure of these electrical devices and 
their interconnections. 
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Figure 11: Transistor and chip structure 

 
 
 

Chips today perform virtually all computing and include many types. First, 
logic chips perform calculations on digital data (0s and 1s) to produce an 
output. Examples include CPUs, which are general-purpose processors 
suitable for a wide variety of computing tasks but not specialized for any 
given tasks, and specialized chips like graphics processing units (GPUs), 
field-programmable gate arrays (FPGAs), and application-specific integrated 
circuits (ASICs). GPUs, FPGAs, and ASICs are specialized for improved 
efficiency and speed for specific applications—such as AI—at the expense of 
worse-than-CPU efficiency and speed on other applications.  
 
In contrast to logic chips, memory chips store the digital data on which logic 
devices perform calculations. Examples include “dynamic random-access 
memory” (DRAM), NAND flash memory, and solid-state hard drives. Analog 
chips convert between analog (continuous) data and digital (0s and 1s) 
data. Mixed-signal chips include both digital and analog functions. A 
system-on-a-chip (SoC) is a single chip that includes all necessary computer 
functions, including logic functions and memory.147 
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Appendix B: How AI Chips Work 
 
AI chips implement specific techniques to increase efficiency and speed 
relative to CPUs. See Figure 12 for a top-down view of a generic AI chip and 
a pictorial representation of these techniques, which are described in detail in 
the following subsections. 
 

Figure 12: Generic AI Chip 

 
 

Parallel Computing 
 
The most important improvement an AI chip provides over traditional CPUs is 
parallel computing. AI chips can run a much larger number of simultaneous 
computations than a CPU can. 
 
Computations for DNNs are especially parallelizable because they are 
identical and not dependent on the results of other computations. DNN 
training and inference require a large number of independent, identical 
matrix multiplication operations, which in turn requires performing many 
multiplications that are then summed—so called “multiply-and-accumulate” 
operations.148,149 
 
AI chip designs typically include large numbers of “multiply-accumulate 
circuits” (MACs) in a single chip to efficiently perform matrix multiplication 
operations within a massively parallel architecture.150 Performing calculations 
in parallel also enables the AI chip to complete calculations faster than in 
sequence. Multiple AI chips connected in a parallel architecture can further 
increase the degree of parallelism.151 While advanced CPUs have some 
degree of parallel architectures, AI chips achieve significantly greater 
parallelism.152 
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Parallel processing operations use several techniques. Data parallelism, the 
most common form of parallelism, splits the input dataset into different 
“batches,” such that computations are performed on each batch in parallel. 
These batches can be split across different execution units of an AI chip or 
across different AI chips connected in parallel. Data parallelism works for any 
type of neural network. Across a wide variety of neural networks, data 
parallelism using hundreds to thousands of batches during training achieves 
the same model accuracy without increasing the total number of required 
computations. However, greater numbers of batches start requiring more 
compute to achieve the same model accuracy. Beyond a certain number of 
batches—for some DNNs, over a million—increasing data parallelism 
requires more compute without any decrease in time spent training the model, 
thereby imposing a limit on useful data parallelism.153 
 
Model parallelism splits the model into multiple parts on which computations 
are performed in parallel on different execution units of an AI chip or across 
different AI chips connected in parallel.154 For example, a single DNN layer 
includes many neurons, and one partition may include a subset of those 
neurons and another includes a different subset of the same neurons. An 
alternative technique performs calculations on different neural network layers 
in parallel.155 
 
Given the limits on parallelism, scaling up the amount of compute through 
more AI chips in parallel is not on its own a viable strategy for further AI 
progress.156 Instead, research is necessary to produce AI algorithms allowing 
greater degrees of data and model parallelism, including research to 
combine techniques to multiply the degree of parallelism.157 
 
Low-Precision Computing 
 
Low-precision computing—which sacrifices numerical accuracy for speed and 
efficiency—is especially suitable for AI algorithms.158 An x-bit processor 
contains execution units each built to manipulate data that is represented by x 
bits. A transistor stores a bit, which can take a value of 1 or 0; therefore, x bit 
values allow 2x different combinations. Table 5 shows common values of x for 
processor data types. 
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Table 5: Data types 
 

Data types 64-bit 32-bit 16-bit 8-bit 

Possible values 18 quintillion 
(1.8 x 1019) 

4.3 billion 
(4.3 x 109) 

65,536 
(6.5 x 104) 

256 
(2.5 x 102) 

 
 

Higher-bit data types can represent a wider range of numbers (e.g. a larger 
set of integers) or higher precision numbers within a limited range (e.g. high 
precision decimal numbers between 0 and 1). Fortunately, with many AI 
algorithms, training or inference perform as well, or nearly as well, if some 
calculations are performed with 8-bit or 16-bit data representing a limited or 
low-precision range of numbers.159 Even analog computation can suffice for 
some AI algorithms.160 These techniques work for the following reasons. First, 
trained DNNs are often impervious to noise, such that rounding off numbers 
in inference calculations does not affect results. Second, certain numerical 
parameters in DNNs are known in advance to have values falling within only 
a small numerical range—precisely the type of data that can be stored with a 
low number of bits.161 
 
Lower-bit data calculations can be performed with execution units containing 
fewer transistors. This produces two benefits. First, chips can include more 
parallel execution units if each execution unit requires fewer transistors. 
Second, lower-bit calculations are more efficient and require fewer 
operations. An 8-bit execution unit uses 6x less circuit area and 6x less 
energy than a 16-bit execution unit.162 
 
Memory Optimization 
 
If an AI algorithm’s memory access patterns are predictable, AI chips can 
optimize memory amounts, locations, and types for those predictable uses.163 
For example, some AI chips include sufficient memory to store an entire AI 
algorithm on-chip.164 Intra-chip memory access provides major efficiency and 
speed improvements compared to communication with off-chip memory. 
Model parallelism becomes an especially useful tool when a model becomes 
too large to store on a single AI chip; by splitting a model, different portions 
can be trained on different AI chips connected in parallel.165 
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By contrast, most CPUs have a “Von Neumann” design, which includes a 
single central bus—a communication system that shares data between the 
CPU and a separate memory chip storing program code and data. Given the 
bus’ limited bandwidth, the CPU must separately access the code and data 
sequentially and experiences a “Von Neumann bottleneck,” whereby 
memory-access latency prevents CPUs from achieving speeds enabled by 
high transistor-switching speeds.166 The Von Neumann design is useful for 
general-purpose computing. AI chips, on the other hand, do not require a 
Von Neumann design or exhibit the Von Neumann bottleneck. 
 
Domain-Specific Languages 
 
Domain-specific languages (DSLs) provide efficiency gains for specialized 
applications run on specialized chips.167 
 
Programmers use computer languages to write computer code (i.e. 
instructions to a computer) in a human-understandable way. A computer 
program called a compiler (or an interpreter) then translates this code into a 
form directly readable and executable by a processor. Different computer 
languages operate at various levels of abstraction. For example, a high-level 
programming language like Python is simplified for human-accessibility, but 
Python code when executed, is often relatively slow due to complexities of 
converting high-level instructions for humans into machine code optimized for 
a specific processor. By contrast, programming languages like C operating at 
a lower-level of abstraction require more complex code (and effort by 
programmers), but their code often execute more efficiently because it is 
easier to convert into machine code optimized for a specific processor.168 
However, both examples are general-purpose programming languages 
whose code can implement a wide variety of computations, but is not 
specialized to translate efficiently into machine code for specific 
computations. 
 
By contrast, DSLs are specialized to efficiently program for and execute on 
specialized chips. A notable example is Google’s TensorFlow, which is DSL 
whose code runs with higher efficiency on AI chips than any general-purpose 
language would.169  Sometimes, the advantages of DSLs can be delivered by 
specialized code libraries like PyTorch: these code libraries package 
knowledge of specialized AI-processors in functions that can be called by 
general-purpose languages (such as Python in this case).170 
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Appendix C: AI Chip Benchmarking Studies 
 
Many researchers have attempted to benchmark DNN efficiency and speed 
of AI chips against CPUs and each other, with varying results depending on 
variables including chip type, whether the computation is training or 
inference, and DNN type (i.e. the benchmark). DNN types include fully 
connected neural networks (FCNNs), convolutional neural networks (CNNs), 
recurrent neural networks (RNNs), long short-term memory (LSTM), residual 
networks (ResNets), and others. Table 6 presents results for a sampling of key 
recent studies on various comparisons between server grade and PC grade 
chips.171 Notably, even some CPUs are being designed with improved AI 
capabilities (e.g. 200x speed increases), which may reduce the difference 
between CPU and AI chip results.172 Finally, all of the chips listed below are 
U.S. chips, except for the U.K. Graphcore chip and the Chinese Cambricon 
chip. Little rigorous benchmarking data exists for Chinese AI chips. 
 

Table 6: AI Chip Efficiency and Speed Benchmarking Studies for DNNs 
 

Author and 
year 

Chip comparison Computati-
on type 

DNN types Efficiency Speed 

Harvard-1 
(2019)173 

Nvidia Tesla 
V100 GPU vs. 

Intel Skylake CPU 

Training FCNN - 1-100x 

Google TPU 
v2/v3  ASIC vs. 

Nvidia Tesla 
V100 GPU 

CNN, RNN, 
FCNN 

- 0.2-10x 

MLPerf 
(2019)174 

Google TPU v3 
ASIC vs. Nvidia 
Tesla V100 GPU 

Training ResNet, SSD, R-
CNN, NMT, 
Transformer, 

MiniGo 

- 0.8-
1.2x 

Graphcore 
(2019)175 

Graphcore IPU 
ASIC vs. GPU 

Training Transformer, MLP, 
Autoencoder, 

MCMC 

- 1-26x 

Inference Transformer, 
ResNext 

- 3-43x 

Google 
(2017)176 

Nvidia K80 GPU 
vs. Intel Haswell 

CPU 

Inference Weighted average 
of MLP, CNN, 

RNN 

3x 2x 
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Improved 
Google TPU v1 
ASIC vs. Intel 
Haswell CPU 

196x 50x 

Stanford 
(2017)177 

Nvidia Tesla K80 
or P100 GPU vs. 

16 Intel 
Broadwell vCPUs 

Training ResNet - 2-12x 

Inference - 5-3x 

Hong Kong 
Baptist 

(2017)178 

Nvidia GTX 
1080 GPU vs. 
Intel Xeon CPU 

Training FCNN, CNN, 
RNN, ResNet 

- 7-572x 

Harvard-2 
(2016)179 

 Nvidia GeForce 
GTX 960 GPU 
vs. Intel Skylake 

CPU 

Training CNN, RNN, 
FCNN, MemNet 

- 3-
1,700x 

Inference - 2-500x 

Bosch 
(2016)180 

Nvidia GTX Titan 
X GPU vs. Intel 

Xeon CPU 

Training CNN, RNN, 
FCNN 

- 7-29x 

Inference - 9-30x 

Stanford / 
Nvidia 

(2016)181 

Nvidia GeForce 
Titan X GPU vs. 

Intel Core i7 CPU 

Inference Geometric mean 
of CNN, RNN, 

LTSM 

4-7x 15-16x 

EIE ASIC vs. 
Nvidia GeForce 

Titan X GPU 

1,052x 4x 

Rice (2016)182 Nvidia Jetson 
TK1 GPU vs. 
Nvidia Jetson 

TK1 CPU 

Inference CNN 4x 16x 

Texas State 
(2016)183 

Nvidia GeForce 
Titan X GPU vs. 
Intel Xeon CPU  

Training CNN 12x 19x 

UCSB / CAS 
/ Cambricon 

(2016)184 

Cambricon-ACC 
ASIC vs. Nvidia 

K40M GPU 

Mean of 
training 

and 
inference 

Geometric mean 
of MLP, CNN, 
RNN, LTSM, 

Autoencoder, BM, 
RBM, SOM, HNN 

131x 3x 

Michigan-1 
(2015)185 

Nvidia GTX 770 
GPU vs. Intel 
Haswell CPU 

Inference DNN 7-25x 5-9x 
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Xilinx Virtex-6 
FPGA vs. Intel 
Haswell CPU 

20-70x 10-18x 

Michigan-2 
(2015)186 

Nvidia K40 GPU 
vs. Intel Xeon 

CPU 

Inference CNN, DNN - 40-
180x 

Peking / UCLA 
(2015)187 

Xilinx Virtex-7 
FPGA vs. Intel 

Xeon CPU 

Inference CNN 25x 5x 

Microsoft 
(2015)188 

Nvidia GeForce 
Titan X GPU vs. 
Intel Xeon CPU 

Inference CNN 77x 78x 

Intel Arria 10 
GX1150 FPGA 

vs. Intel Xeon 
CPU 

102x 16x 

ETH Zurich / 
Bologna 

(2015)189 

Nvidia GTX 780 
GPU vs. Intel 

Xeon CPU 

Inference CNN - 23x 

NYU / Yale 
(2011)190 

Nvidia GTX 480 
GPU vs. Intel 

DuoCore CPU 

Inference CNN 34x 267x 

Xilinx Virtex-6 
FPGA vs. Intel 
DuoCore CPU 

368x 134x 
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Appendix D: Chip Economics Model 
 
This appendix explains the assumptions and calculations underlying the line-
item values for the CSET chip economics model presented in Table 3. The 
model takes the perspective of a fabless firm designing a chip, purchasing 
foundry services to fabricate the chip, and operating the chip, all in 2020 
when TSMC expects to mass produce 5 nm node chips. 
 
Chip Transistor Density, Design Costs, and Energy Costs 
 
Chip transistor density. Our model uses, as a baseline, a hypothetical 5 nm 
GPU with the specifications of Nvidia’s Tesla P100 GPU, which OpenAI used 
in 2018 to train the breakthrough AI algorithm OpenAI Five.191 The P100 
GPU is fabricated at TSMC at the 16 nm node and contains 15.3 billion 
transistors in a chip (die) area of 610 mm2, translating to a transistor density 
of 25 MTr/mm2.192 A 300 mm diameter silicon wafer produces 71.4 610 
mm2 GPUs on average.193 Our hypothetical 5 nm GPU has a chip area of 
610 mm2 and given its greater transistor density than the P100 GPU, 90.7 
billion transistors.194 Table 7 presents estimated TSMC transistor densities for 
nodes between 90 and 5 nm. For nodes in the 90 to 7 nm range, our model 
uses a hypothetical GPU with identical specifications, including transistor 
count, as the hypothetical 5 nm GPU, except with a transistor density 
associated with the hypothetical node. Therefore, GPUs with nodes larger 
than 5 nm will respectively have an area greater than 610 mm2, resulting in 
differing numbers of GPUs fabricated per wafer as shown in Table 7.  
However, the model could equivalently be interpreted as accounting for one 
chip at the 5 nm node, but at any given larger node, multiple chips totaling 
the same transistor count as one 5 nm chip. 
 

Table 7: TSMC transistor density195 
 

Node (nm) 90 65 40 28 20 16/12 10 7 5 

Density (MTr/mm2) 1.6 3.3 7.7 15.3 22.1 28.9 52.5 96.3 171.3 

Average chips per 
wafer 

0.7 1.4 3.2 6.4 9.2 12.0 21.9 40.1 71.4 

 
 

Design costs per chip. For chip design costs for nodes between 5 to 65 nm, 
we use the IBS estimates presented in Table 1 for 5 to 65 nm. For the 90 nm 
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node, we extrapolate the cost based on the IBS data.196 We assume 
production of 5 million units.197 For the 5 nm node, we obtain a design cost 
per chip of $108. For larger nodes, the chips in our model require a larger 
chip area (or equivalently, more chips), therefore for larger nodes the per 
chip cost is determined by dividing by a smaller number of units.198 In 
practice, the design cost per chip could vary widely due to varying 
production volume for different AI chips or depending on whether a fabless 
firm reuses old chip designs or IP cores.199 
 
Annual energy cost per chip. The Nvidia Tesla P100 GPU runs at 9.526 
teraflops for 32-bit floating point calculations with a thermal design power 
(TDP) of 250 watts.200 When a typical high-end GPU is idle, it uses 31 
percent of TDP,201 while peak utilization uses 100 percent of TDP. We adopt 
OpenAI’s assumption that a typical GPU exhibits a utilization rate of 33 
percent during training.202 For simplicity, we assume a linear relationship 
between utilization and power consumption,203 yielding an estimate that the 
Nvidia Tesla P100 GPU uses 54 percent of TDP during training.204 We then 
use an estimated electricity cost of $0.07625 per kilowatt-hour to determine 
chip annual energy usage.205 We then increase the energy costs by 11 
percent to account for cooling and other costs based on Google’s report that 
its data centers have an average power usage effectiveness (PUE) of 1.11.206 
We also increase energy costs to account for a power supply efficiency of 95 
percent. For nodes other than 16 nm, we adjust electricity cost according to 
TSMC’s node-to-node comparative power consumption data presented in 
Figure 6.207 
 
Foundry, Assembly, Test, and Packaging Costs 
 
We first use TSMC’s historical financial data to estimate foundry sale price 
per chip for each node. Initially, we note foundry revenue equals capital 
assets consumed (i.e. depreciated) plus other costs plus operating profit. 
Table 8 breaks down the unweighted yearly average of the percentage 
contributions of these components for the period from 2004 to 2018. Table 8 
also lists the unweighted yearly average of TSMC’s capital depreciation rate 
for this period. For the remainder of the calculations, we use these values.208 
 

Table 8: Costs used in the model (taken from TSMC’s financials)209 
 

Financial line-item Average from 2004 to 2018 

Capital consumed (i.e. depreciated) 24.93% 
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Other costs 39.16% 

Operating profit 35.91% 

Revenue 100% 

Capital depreciation rate 25.29% 

 
 

We first calculate capital consumed per wafer for each node based on 
TSMC’s capital investments, annual wafer capacity of its foundries, and the 
capital depreciation rate as follows. Then, we will infer other costs and 
markup per chip using Table 8. 
 
To obtain capital consumed per wafer, we first calculate capital investment 
per wafer processed per year. TSMC currently operates three GigaFabs 
(Fabs 12, 14, and 15) with a fourth (Fab 18) scheduled to come online in 
2020 with expansion thereafter.210 These four fabs include a total of 23 fab 
locations each with a known initial capital investment in 2020 USD—
representing investments in facilities, clean rooms, and purchase of SME—and 
annual 300 mm wafer processing capacity. Dividing these two values 
produces the capital investment per wafer processed per year for each fab 
location. Figure 13 plots these 23 values according to the year in which each 
fab location began processing wafers.211 When fit to an exponential 
trendline, capital investment per wafer processed per year shows an 8.3 
percent increase per year, with a value of $4,649 in 2004 and $16,746 in 
2020. 

 
Figure 13: Capital investment per 300 mm wafer processed per year212 
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Table 9 on line 2 lists the trendline-fitted capital investment per wafer 
processed per year for each node based on the year and quarter of 
introduction of that node listed in line 1.213 Based on the yearly depreciation 
rate of 25.29 percent from Table 8, line 3 lists net capital depreciation rate 
for each year’s capital investment per wafer processed per year from the 
perspective of the year 2020. Typical capital depreciation schedules reach a 
maximum. Here, we assume a maximum of 65 percent.214 Line 4 lists 
undepreciated capital remaining at the start of 2020, which we obtain by 
depreciating the capital investment per wafer processed per year using the 
net capital depreciation rate. Line 5 lists how much of any given year’s 
undepreciated capital the processing of one wafer would consume in 2020. 
This value is obtained by multiplying any given year’s undepreciated capital 
by the capital depreciation rate of 25.29 percent.215 Line 6 lists other costs 
and markup per chip for each node, which we obtain by multiplying capital 
consumed per chip by the ratio of other costs and operating profit as a 
percentage of revenue (75.07 percent) and capital consumed as a 
percentage of revenue (24.93 percent), as obtained from Table 8. To avoid 
complexity, for each node we assume a flat ratio of capital consumed to 
other costs and markup.216 Line 7 lists the foundry sale price per wafer, which 
is the sum of capital consumed per wafer (line 5) and other costs and markup 
per wafer (line 6).217 In line 8, we convert the per wafer value to a per chip 
value by dividing by the number of chips per wafer of a given year’s node 
listed in Table 7.218 Foundry sale price per chip values in line 8 are not 
integer fractions of foundry sale price per wafer values in line 7, as for each 
node the average number of chips per wafer is not an integer.219 
 

Table 9: Calculation of foundry sale price per chip in 2020 by node 
 

Line Node (nm) 90 65 40 28 20 16/12 10 7 5 

1 
Mass production year and 
quarter220 

2004 
Q4 

2006 
Q4 

2009 
Q1 

2011 
Q4 

2014 
Q3 

2015 
Q3 

2017 
Q2 

2018 
Q3 

2020 
Q1 

2 
Capital investment per wafer 
processed per year $4,649 $5,456 $6,404 $8,144 $10,356 $11,220 $13,169 $14,267 $16,746 

3 

Net capital depreciation at 
start of 2020 (25.29% / 
year) 65% 65% 65% 65% 65% 65% 55.1% 35.4% 0.0% 

4 

Undepreciated capital per 
wafer processed per year 
(remaining value at start of 
2020) $1,627 $1,910 $2,241 $2,850 $3,625 $3,927 $5,907 $9,213 $16,746 

5 
Capital consumed per wafer 
processed in 2020 $411 $483 $567 $721 $917 $993 $1,494 $2,330 $4,235 
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6 
Other costs and markup per 
wafer $1,293 $1,454 $1,707 $2,171 $2,760 $2,990 $4,498 $7,016 $12,753 

7 Foundry sale price per wafer $1,650 $1,937 $2,274 $2,891 $3,677 $3,984 $5,992 $9,346 $16,988 

8 Foundry sale price per chip $2,433 $1,428 $713 $453 $399 $331 $274 $233 $238 

Finally, we calculate assembly, test, and packaging (ATP) costs per chip. 
Under the fabless-foundry model, fabless firms design chips, and purchase 
foundry services from foundries and assembly, test, and packaging (ATP) 
services from outsourced semiconductor assembly and test (OSAT) firms. We 
can derive OSAT costs based on the ratio of the fab market to the ATP 
market. Total 2018 OSAT revenue was $30 billion.221 Because OSAT 
revenues are about 36.8% of ATP revenues, the total ATP market was $81.5 
billion.222 Total 2018 foundry revenue was $62.9 billion.223 Total 2018 IDM 
revenue was $312.8 billion and total 2018 fabless revenue was $108.9 
billion for a ratio of 2.9.224 We multiply total 2018 foundry revenue by this 
ratio to obtain an estimated $180.6 billion in fab revenue attributable to 
IDMs. Adding this value to 2018 foundry revenue gives us a total 
semiconductor fab revenue of $243.5 billion. Finally, dividing the ATP market 
of $81.5 billion by the fab market of $243.5 billion equals 33.48% percent. 
We calculate OSAT costs for each node by multiplying the foundry sale price 
by this percentage.225 
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