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Executive Summary 

AI can achieve remarkable performance under ideal conditions that are difficult to 
replicate in many real-world settings. The AI that often captures headlines typically 
runs under these conditions, in well-maintained data centers with an abundant supply 
of compute and power. Currently, most top-performing AI models designed for vision 
and language applications rely on these abundant resources. However, these 
resources are highly constrained on many systems in the real world, be it drones, 
satellites, or ground vehicles.  

This is the challenge of ‘onboard AI’: running AI directly on a device or system without 
additional backend compute support. There are times when running models onboard is 
optimal or necessary, and doing so can bring a range of advantages. However, onboard 
computing constraints can introduce significant limitations, or completely inhibit the 
use of certain models on some systems. This creates a gap between the highest-
performing AI systems and those deployed in the real world, which has implications 
for the performance and robustness of many sought-after applications. 

Onboard AI systems are constrained for several reasons, but the primary factor is 
processing speed. The highest-performing models execute extremely large numbers of 
computations for each output they produce. These calculations require high-
performance processors, often many of them. However, because of their size and 
power demands, such processors cannot be used in various systems. Practically, this 
means chips designed for onboard use do orders of magnitude fewer calculations and 
cannot run AI models quickly enough for many applications. 

Onboard AI systems also need substantial working memory. Data center chips have 
the memory to hold large models, store the results of ongoing calculations, and enable 
fast communications both on the chip and between chips to split the calculations 
across several devices. However, many devices are not designed for large-scale 
computations or equipped with large working memories. 

These constraints are influenced by the size, weight, and power limitations of many 
systems. Most state-of-the-art chips use far more power than what is available on 
small-footprint devices. Powerful chips require larger and heavier batteries that are 
infeasible for lightweight systems such as small drones, in addition to the chip’s 
packaging, which can increase their weight by a factor of ten.1  



 

 

Center for Security and Emerging Technology | 2 

 

Finally, real-world applications might have to sacrifice computing capabilities for a 
host of other reasons, such as radiation hardness and temperature sensitivity. 
Moreover, chips age and become out of date if they operate for many years, which can 
make them ill-equipped to process contemporary models. 

Stakeholders across government and industry should understand that these 
constraints cannot always be resolved, given current technologies and platform 
limitations. Engineers can mitigate some of them, such as by using different algorithms 
that are less resource-intensive but still have acceptable performance. However, in 
many cases, onboard AI will be inferior to the state-of-the-art models that grab 
headlines or achieve high-level performance on benchmarks. In some high-risk 
contexts, the use of AI onboard systems may be inappropriate or require additional 
safeguards.  
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Introduction   

NASA’s two-billion-dollar Perseverance rover touched down on Mars in 2021, hosting 
a suite of advanced tools, including small AI models — but its central onboard 
computer, or “brain,” runs on re-engineered 1990s processors with less compute than 
a smartphone. Moreover, these chips had to be hardened to survive radiation from the 
harsh space environment, increasing their price to nearly $200,000. It’s not that NASA 
is behind the times; rather, they need computers that survive cosmic radiation, do not 
overheat in the vacuum of space, and do not use all of the rover’s power. This means 
most of the commercial chips underlying cutting-edge AI in robotics, navigation, and 
image processing will not be coming soon to a rover on Mars.2 

While systems on Earth may not struggle with cosmic radiation, there are many other 
constraints that must be managed. Researchers developing new AI models use 
supercomputers in labs or on the cloud, but soldiers on a battlefield or sensors in a 
farmer’s field will not have supercomputers nearby, and they often cannot 
communicate effectively with one over the Internet.  

This report highlights how constraints can create a gap between the AI that sets 
performance records and the AI implemented in the real world. We begin with a brief 
explanation of why one would run AI onboard a device, as opposed to a cloud or data 
center. Part two overviews constraints that can inhibit models and compute hardware 
from running onboard. Part three investigates three case studies to illuminate how 
these constraints impact AI performance: computer vision models on drones, satellites, 
and autonomous vehicles. These case studies are only meant to elucidate the 
constraints on various systems, and are not meant to be a comprehensive assessment 
of constraints across all or most systems that could use onboard AI. Part four provides 
a broad assessment of trends based on findings from the case studies, and considers 
how they might impact onboard AI functionality in the future. Part five concludes with 
recommendations to better manage the constraints of onboard AI. 

Why Run AI Onboard?  

Running AI onboard is optimal — or even necessary — for many applications, and 
brings a range of advantages over running models on remote processors. Onboard 
processing can be faster because of reduced communication delays; it promotes 
reliability and security, because it does not require communication with other devices; 
and it enables a greater degree of privacy because all data remains onboard.3 
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Moreover, onboard models have mobility on systems such as aircraft, ground vehicles, 
and ‘smart’ munitions.4 

Some applications require the speed and reliability of onboard AI. For example, robot-
assisted surgery systems can malfunction if network connections are disrupted,5 which 
can have life-threatening consequences. Models on autonomous vehicles must run 
local inference6 continuously to respond to rapid changes on the road. This is 
unworkable if models are processed in a distant data center, as it introduces latency 
and slows the vehicle’s navigation speed.  

There are similar concerns for the military application of AI in contested environments, 
where adversaries can degrade communications and threaten AI speed, security, and 
reliability. If a hub, like a mobile data center running inference for several connected 
devices, is destroyed or loses communications, then any device dependent on it cannot 
run AI-related functions.7 Further, wireless communication with a hub can be 
intercepted, manipulated, or expose a soldier’s location.  

Privacy concerns, such as disclosing user data, can also incentivize individuals and 
companies to run models locally rather than send data to the cloud. For example, many 
iPhones have onboard facial recognition to confirm a user’s identity. The model runs 
onboard due to Apple’s data privacy policies, which involve encrypting user data sent 
to the cloud. Cloud-based facial recognition cannot be used in this case, so Apple 
engineers had to find ways to run it directly on iPhones.8 

This report focuses on the constraints and limitations of onboard AI, and we 
investigate case studies of computer vision models running on edge devices — but we 
must stress that there are many instances where onboard AI does not substantially 
limit performance. For example, in Appendix D we investigate how Google offers 
lightweight machine translation models that can run locally on smartphones, with 
similar performance to their cloud translators (which run in data centers). 

Constraints of Onboard AI 

The constraints of onboard AI are diverse and depend upon the characteristics of the 
device, the types of applications and models executing onboard, the environment in 
which the device operates, and the financial costs to purchase and configure hardware 
to enable AI functionality.9  
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The first-order constraints depend on the device: how much compute and memory can 
be physically placed onboard to run AI models, given the device’s size, weight, and 
power. This also includes any auxiliary compute needed to run non-AI functions, which 
further increases onboard resource requirements. In general, small, low-power devices 
will be more constrained than larger, higher-power devices. 

Other constraints arise based on the application or model onboard the device. For 
example, large language models are a particularly computationally-demanding type of 
AI and can be impossible to run on some devices. One such model, OPT-175B, is 
partitioned across 16 high-performance Graphics Processing Units (GPUs) — far more 
compute than is available on the edge devices explored in this report.10 Even the 
smallest among the ‘LLaMa’ language models, which were all designed to be small 
and efficient, exhausts the capacity of many high-performance data center GPUs.11 AI 
models for other tasks, like those in computer vision, are typically smaller and less 
resource-intensive than large language models, but they too often exceed the capacity 
of well-provisioned AI chips. Onboard chips are usually far less capable for many 
reasons, so the models that run on them are often constrained to lower performance.  

Environmental characteristics such as extreme temperature or radiation can also be 
constraining, as these conditions cause processors to malfunction or degrade. This can 
be problematic if the onboard chips are used for critical functions or long-duration 
deployments. Lastly, financial constraints can lead manufacturers to use cheaper chips 
or reduce maintenance, which can reduce onboard compute capacity. 

Table 1 outlines the constraints that can inhibit AI and compute hardware from 
functioning onboard a device, and potentially lower the threshold of AI performance. 
This is not a comprehensive assessment, but rather an overview of common variables 
that impact compute, memory, and AI functionality.  
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Table 1. Constraints of Onboard AI 
Device-Dependent Constraints 

Constraint Impact 

Compute 
A device must be able to perform enough calculations per second to run AI models 
(and other processes) in a reasonable amount of time.12 

Memory 

Models require working memory to temporarily store and retrieve information onboard 
a device. Memory can impact model speed, power consumption, and overall 
functionality.13  

Storage 
Models must be permanently stored within a computer system. Insufficient storage 
onboard a device can restrict the choice of AI models.  

Power 
Each calculation or movement of data takes energy. High-performance hardware 
running large models can outstrip onboard power sources. 

Size and Weight 
Processors are small but typically require additional components that can exceed size 
and weight restrictions of many systems, such as cooling, cards, and batteries.14 

Auxiliary 
Compute 

Additional compute required to run non-AI functions increases the resources required 
onboard a device.15 

AI Model, Task, and Application-Dependent Constraints 

Constraint Impact 

Model Size 
Models with a large number of parameters generally require more compute and 
memory to function, and they often run slower. 

Model Parameter 
Precision 

Data and model parameters are numbers that can be represented with more or fewer 
bits. Using fewer bits reduces compute and memory requirements, but can also 
reduce performance.16 

Model 
Architecture 

The connectivity of parameters in a neural network influences model compute and 
memory requirements, as well as speed.17 

Task Input Data 
Applications that need high-resolution inputs or large amounts of data per input can 
demand untenable amounts of compute and memory.18 

Application 
Speed 

This refers to how quickly a model must ingest data and run inference for a particular 
application. Some models run too slowly for certain applications.19 

Application Pre-
Processing 

There can be extensive computing required to reformat input data to match the model 
and application.20 

Application 
Model Quantity Applications that use several AI models need to share limited resources on a device.21 

Application 
Safety 

AI applications with safety implications must be robust and reliable, and sometimes 
require additional components like backup systems.22 
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Environmental Constraints 

Constraint Impact 

Accessibility 
Models may be constrained by hardware that is outdated or degraded if it cannot be 
physically accessed, maintained, or replaced.23 

Environmental 
Characteristics 

Environments with extreme temperatures, humidity, or radiation can make compute 
hardware malfunction. Hardware designed for such conditions tends to be lower 
performance, which can constrain AI models. 

Financial Constraints 

Constraint Impact 

Compute 
Configuration 

It can be costly to configure compute hardware to function on a particular device or 
run a particular type of model.24 

Compute 
Purchase and 
Maintenance 

Purchasing, updating, repairing, or replacing compute hardware can be expensive, 
leading to models that can be constrained to low-performance hardware (to reduce 
costs). 

Source: CSET.  

These constraints often necessitate the use of smaller models that run faster and use 
less compute and memory, or the reduction of a model’s size or mathematical 
precision.25 But as we illustrate in the following case studies, both of these options can 
reduce the threshold of AI performance.  

Case Studies 

Here we investigate three case studies of onboard AI: object detection and real-time 
object detection models on drones and autonomous vehicles, and image classification 
models on satellites. We gauge how compute constraints would influence AI 
functionality and performance, and determine if top-performing models for each task 
can function within the constraints of the devices and environments. 

We selected these cases because there is sufficient open-source information to judge if 
and how specific AI models can function locally. The examples encapsulate a range of 
systems operating in different environments (i.e., air, land, and space), and the systems 
themselves have dual-use characteristics that are relevant to both civilian and military 
activities. The methodology to select and assess these case studies can be found in 
Appendix A. Lastly, we also provide a case study on machine translation in Appendix 
D; however, because of data limitations we could not apply the same methodology as 
we did for the other case studies.  
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Drones: Object Detection 

Object detection on drones has immense potential for military and civilian operations. 
Onboard models can improve surveillance and reconnaissance in contested 
environments where communications are degraded, and may enable drones to loiter 
and automatically track targets. This potential has spurred substantial R&D and 
investment,26 and there is a range of programs actively developing the technology for 
future military and civilian operations.27 
 
Performing object detection onboard can involve a number of tasks, including 
classifying the object and generating a bounding box around it (i.e., localizing where an 
object is within an image), indicating the confidence of the detection, and possibly 
transmitting coordinates to an operator.  
 
However, the detections may not be reliable, as currently the best object detection 
model only reaches about 65% mean average precision28 (herein referred to as 
‘precision’) on the most popular benchmark.29 The boxes may surround the object 
perfectly, partially, or not at all. Even if the boxes are accurate, the classification of the 
target may be low-confidence or completely incorrect. Such misdetections can be 
catastrophic if the AI is relied upon in a combat operation.  

 
Currently, open-source object detection models are not accurate, reliable, or robust 
enough to use in critical operations like automatic targeting (even with fine-tuning).30 
Moreover, the best model performance of 65% precision may not translate to the real 
world. That score was achieved in an ideal lab setting using a catered test dataset, not 
a dynamic environment in which the model makes detections on a mobile drone. For 
example, when researchers tested models against a custom object recognition 
benchmark that reflected real-world imagery, they found a 40–45% drop in 
performance compared to performance on other benchmarks.31 Using models in new 
environments and in ways that are ‘out of distribution,’ where the imagery inputs do 
not reflect the data on which the model was trained, can degrade performance.32 
These problems can arise when models are deployed onboard mobile systems that 
operate in changing environments, and where the models can be harder to monitor and 
update. 
 
To illustrate AI performance degradation onboard devices, we assess whether top-
performing object detection models could function locally on small and medium-sized 
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drones. While there are many classifications of drones based on size, weight, flight 
time, etc., we focus on size and weight. We use small and medium-sized classifications 
for any drone with a maximum takeoff weight between 250 grams and 55 pounds. 
These fall within the DoD’s ‘Group 1’ and ‘Group 2’ classifications of Uncrewed Aerial 
Systems (UAS).33 We assess small and medium-sized drones separately because their 
physical differences can impact AI constraints.  

Small Drones 

Small drones34 are increasingly common in today’s battlefield, but it is unclear to what 
extent they can be enabled by object detection because the best AI models for this 
purpose are large and compute-intensive.35 The GPU boards36 that typically run these 
models are too large for the drones to carry and consume too much power for the 
drones’ batteries to sustain, and therefore cannot be used to run models locally. 
Practically, this means that users may need to accept poorer performance than 
anticipated, or that small drones may not be suitable for certain tasks despite 
compelling laboratory demonstrations. 
 
Figure 1. Size, Weight, and Power of Small Drones vs. a High-End GPU 

 
Note: We only provide a rough estimation of the payload capacity of small drones because there are 
many different variables that impact how much payload a small drone can carry, in addition to other 
onboard components such as cameras. 
Sources: See Endnotes.37 
 
We assessed several object detection models to compare the compute capacity of 
small drones against model sizes, performance, and compute requirements. For 
example, the largest model in the ‘YOLOv7’ family of object detectors achieves a 
moderate performance of about 57% precision.38 However, the model runs on power-
hungry GPUs that exceed the size and battery capacity of small drones. Therefore, the 
model will not function effectively onboard such devices. Conversely, the smallest 
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YOLOv7 model could run on small drones using specialized low-power chips because 
it is 25 times smaller and runs with 60 times fewer calculations. However, it only 
achieves 38.7% precision, which is about 35% worse than the larger model. See 
Appendix B for data on the compute hardware examined for this report, which includes 
both conventional and low-power ‘edge’ processors. 

 
Comparing the two models’ detections in Figure 2 illustrates a significant performance 
disparity: the larger model (top) generates more accurate bounding boxes and 
classifications, often with higher confidence, while the smaller model (bottom) has 
more misdetections and lower confidence. Constraints on small drones force the use of 
smaller models, reducing the threshold of AI performance to below the state-of-the-
art. And even if the large model could function on a small drone, its performance of 
60% precision may still be unacceptably poor. Note these detections are from standard 
YOLOv7 models and fine-tuning on more data can improve performance, but 
performance disparities between the large and small models will likely persist even 
after fine-tuning.39
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Figure 2. Object Detection with the Large YOLO Model (a) and Small YOLO Model (b) 
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Notes: We ran the YOLOv7-E6E (large) and YOLOv7-Tiny (small) models on this image with a resolution of 1280 and minimum detection 
confidence threshold of 0.25 (i.e., it only displays detections when it has >25% confidence that it is correct). This image was selected because it 
contains object classes (people and trucks) that the YOLOv7 models were pre-trained to identify. Such models can only identify objects that they 
were pre-trained or fine-tuned to identify. Models were not fine-tuned. 
Image Source: Amer Ababakr, “Mediation and the Way Forward to End the Ukraine War,” Modern Diplomacy, November 2022, 
https://moderndiplomacy.eu/2022/11/21/mediation-and-the-way-forward-to-end-the-ukraine-war/.

https://moderndiplomacy.eu/2022/11/21/mediation-and-the-way-forward-to-end-the-ukraine-war/
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Medium-Sized Drones 

Medium-sized drones can generally contain more onboard compute to run better-
performing models, but powering the chips can still be challenging. Power remains a 
constraint if the drones use batteries, which cannot run data center GPUs. Integrating 
hardware can also be challenging; one cannot simply plug new processors into the 
drone. For example, captured Russian Orlan-10 UASs were disassembled, revealing 
that they use computer-on-modules (COM) with extremely low compute capacity.40 
Most AI models would not run onboard the Orlan-10 unless the processor was 
replaced, but this would likely require a degree of system reengineering.41 
 
Figure 3. Size, Weight, and Power of Medium-Sized Drones vs. a High-End GPU 

 
Note: We only provide a rough estimation of the payload capacity of medium-sized drones because 
there are many different variables that impact how much payload a medium drone can carry (in addition 
to other onboard components such as cameras). 
Sources: See Endnotes.42 

 
Ultimately, small and medium-sized drones are likely too constrained by hardware to 
run state-of-the-art models. That may be acceptable in some cases, such as 
supporting a drone operator without any automation of tasks. However, it may be 
unacceptable in other use cases, such as using an object detector to identify enemy 
forces without direct human oversight. Stakeholders must not only take into 
consideration the degraded performance of onboard AI, but also establish clear criteria 
and minimum AI performance standards for different use cases and applications. 
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Satellites: Image Classification  

Small Satellites 

The European Space Administration (ESA) conducted an experimental mission in 2020 
that saw the first use of deep learning in low-Earth orbit.43 The mission tested whether 
commercial compute hardware could be used on a small cube satellite (CubeSat) to 
run an AI model. The task was very simple: determine if an image taken by the satellite 
contained clouds or not.44 This application may have been selected in part because it is 
simple enough to test on a CubeSat. Nonetheless, it was useful because the satellite 
could save memory and bandwidth by transmitting only valuable images of earth 
while discarding images of clouds.  

The CubeSat, which is about the size of a briefcase, and the space environment 
introduced several constraints. First, the power from its solar cells and batteries was 
too low to operate conventional processors used for computer vision. Therefore, they 
used a special-purpose, low-power computer vision board45 and a commercial vision 
processing unit (VPU).46 These components were energy-efficient and small enough to 
fit within the CubeSat, but ultimately had less compute capacity than most regular 
processors.47 

Second, they reduced the precision of the model’s calculations48 and imagery data49 to 
save memory and power. This had a negligible effect on the model’s performance due 
to the simplicity of the task, but may degrade the performance of models used for 
other computer vision tasks. Lastly, because this was an experimental mission, the 
VPU was not designed to withstand radiation in space. A longer duration mission 
would need radiation-hardened hardware, which is expensive, typically has less 
compute capacity than commercial chips, and is less likely to efficiently run high-end 
models.50 

The ESA’s cloud detector ran successfully and reached 96% accuracy on satellite 
imagery,51 but this limited success does not mean top-performing image classification 
models52 could function on the CubeSat: the top 9 models on the ImageNet benchmark 
each have over a billion parameters and require more compute than the satellite can 
provide. For example, one of these models53 achieved 90.88% accuracy but used over 
twice the amount of compute available on the CubeSat. This dynamic is illustrated in 
Figure 4, which shows the relationship between model performance, compute usage 
(i.e., FLOPs), and model size (i.e., parameter count). Since the trend is currently toward 
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larger vision models,54 it may become even harder to put the most capable AI onboard 
constrained devices. However, there are also efforts to make these models more 
efficient and less compute-intensive, so it is unclear how constrained these models will 
ultimately become going forward.55 

Figure 4. Model Performance, Compute Requirements, and Model Size (Image 
Classification) 

 
Notes: Model performance is based on the ImageNet benchmark, which is very saturated (meaning that 
many models achieve very high accuracy with small differences in performance). However, we opted to 
use ImageNet because many models have been tested against it, allowing for more comparisons. All 
data is as of December 2022.  
Source: See Appendix C. 

We find that smaller, less compute-intensive models could theoretically function on 
the CubeSat, but with reduced performance. One such model56 achieves 86.9% 
accuracy with six times fewer parameters and seven times fewer calculations than the 
aforementioned large top-performing model. This 4% difference is significant on 
ImageNet, and may be an unacceptable reduction in performance for certain real-world 
applications. See Appendix C for performance, parameter, and compute data on image 
classification models. 
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Large Satellites 

In 2021, NASA’s Jet Propulsion Laboratory deployed three image classification models 
onboard the International Space Station  ISS) to classify remote imagery of Earth’s and 
Mars’ surfaces, as well as ground imagery taken by the Curiosity  over.57 An objective 
of this experiment was to acquire data on the performance of processors in a high-
radiation environment, and ultimately mature their application for AI inference in 
space.58 

The ISS is large and can generate 2,000 times more power than the CubeSat,59 so it 
can host more chips to run higher-performing image classification models.60 This 
compute capacity also enables the use of several AI models, whereas the CubeSat 
only hosted one. However, only a portion of this overall power was allocated to run 
the processors. Moreover, the commercial processors61 used in the mission still have a 
limited lifespan because they are not radiation-hardened.62  

Importantly, these processors can be physically accessed and replaced because there 
are human operators onboard the ISS. Other satellites are typically uncrewed, 
inaccessible, and expected to operate for decades. Therefore, ongoing space missions 
cannot leverage new and improved chips, and the radiation-hardened chips that can 
survive long-duration missions will likely remain far from the state of the art.  

Primarily due to long mission durations, low power, and radiation, the computing 
hardware available on large satellites is likely to significantly constrain AI 
performance. The case studies show that it is possible to run simple image 
classification models on these systems, but the engineering challenges could inhibit 
more complex AI models. Stakeholders must recognize that AI functionality does not 
translate smoothly to the space environment, and should set realistic expectations 
regarding the feasibility of satellite-based AI applications, especially if they are 
intended to operate long-term. 

Ground Vehicles: Real-Time Object Detection 

In 201 , the former senior director of AI at Tesla stated that “as you make the [AI] 
networks bigger by adding more neurons, the accuracy of all their predictions increases 
with the added capacity…but we are not able to deploy them to the fleet due to 
computational constraints.”63 AI is constrained even on systems the size of a car, with 
some of the biggest batteries ever seen in consumer applications.64 
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The constraints are primarily driven by safety. Regulation and industry standards 
require ancillary systems (e.g., airbags, hazard lights, and computers) to run on a 
separate power source from the main battery that propels the car.65 When Tesla 
designed their own Full Self-Driving (FSD) chip to run on auxiliary power, it was 
designed to use only 100 watts. The actual chip uses only a fraction of the power 
consumed by typical AI chips found in data centers. So autonomous vehicles face some 
of the same power constraints seen in the satellite case study. Moreover, safety 
concerns can increase costs: two independent FSD chips are embedded in the vehicle’s 
computer to have redundancy and ensure reliability (though one chip can effectively 
run the AI).66 

The other safety consideration is speed. Object detection models must rapidly (i.e., in 
real time) ingest imagery data from several cameras mounted on the vehicle and then 
make decisions. If the model is too slow or inaccurate, the results can be life-
threatening.  

Unfortunately, faster object detection models are smaller and less accurate.67 This is 
primarily because calculations take time, and the larger a model is, the more 
calculations it is doing. Ultimately, the need for real-time inference reduces the 
accuracy of object detectors. Figure 5 illustrates this dynamic, where model 
performance generally has an inverse relationship with speed. See Appendix C for 
more data on real-time object detection models. Note that all models in this figure are 
designed to operate in real time on certain hardware, and that the inverse relationship 
between performance and speed is even greater when we look at object detectors that 
are not designed to operate in real time. For example, the top-performing, real-time 
object detection model in this figure is not even in the top 30 performing object 
detection models overall. 
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Figure 5. Model Performance, Speed, and Model Size (Real-Time Object Detection) 

 
Notes: Model performance is based on the COCO benchmark. Most models’ speeds were tested with  100 GPUs, allowing for fair comparisons. 
However, four models ran on more powerful T4 and RTX 3090 GPUs. These models would likely run slower on a V100. All data is as of 
December 2022.  
Source: See Appendix C. 
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Object detection is an area of intense academic interest, so the best proprietary models 
are unlikely to significantly outperform open-source models. In fact, we suspect that 
many automotive manufacturers use compute hardware that is too constrained to run 
the best open-source, real-time object detectors, as the speed of these models is 
typically tested on fast, high-power data center chips.68 The FSD chip likely has 
enough compute to run the third-best object detection model,69 which is about half the 
size, requires 39% fewer calculations, and only performs about 1% worse than the top 
model. However, it is unclear if chips for autonomous vehicles can run that model 
quickly enough to meet the speed requirements, which could be a constraint that 
further reduces performance.  

Large ground vehicles including Teslas and trucks can certainly carry powerful 
batteries and computers; in fact, Waymo claims to use “server-grade GPUs” in their 
vehicles but has not released any specifications.70 Nonetheless, these systems still face 
safety and speed constraints, and different companies address them in different ways. 
The environment and context in which AI is deployed matter, especially when slight 
changes in performance can have deadly consequences for drivers and pedestrians. 
This suggests that constraints on hardware and models may exist even on systems 
that would otherwise have access to abundant resources.  

Future of Onboard AI 

How could the constraints of onboard AI and compute change in the future? While 
there are many factors that may affect future developments, for the purpose of 
simplicity, we consider two avenues of development that stakeholders should 
consider: model-side and compute-side development. We assess these developments 
broadly and are agnostic to any particular device, environment, or AI task. 

There are two model-side developments that may constrain the use of some AI 
models. First, many higher-performing models are getting larger, more compute-
intensive, and slower to run. This has been a broad trend since the advent of deep 
learning, and its continuation could make it harder to run models locally on resource-
constrained devices. Conversely, there are reasons to think this trend may slow, as 
prominent researchers are developing lightweight and efficient model architectures, as 
well as methods to reduce their compute requirements without significant performance 
degradation.71 These two trends are largely at odds, and it is unclear how they will 
play out for different types of AI tasks going forward.72 
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There are also compute-side developments that may impact onboard AI.73 First, 
specialized low-power processors are improving,74 allowing for more compute capacity 
at smaller scales with less power consumption. However, this is not guaranteed to 
continue because improvements in specialized processors could slow or stagnate, and 
we currently do not know the future economic viability of these processors to 
incentivize hardware manufacturers to develop them. These specialized designs are 
partly a response to the second trend, which is the slowing of improvements in 
general-purpose processors  Moore’s Law). This trend could potentially happen with 
special-purpose processors, which would make onboard AI more constrained.75 

How these developments intersect will greatly influence the future constraints of 
onboard AI. This is illustrated below in Table 2, where the red cell indicates a 
significant increase in onboard AI constraints, the light blue indicates a significant 
decrease in constraints, and the yellow cells indicate a mix of improvements and 
difficulties (where it will be harder to deduce the broad impact on onboard AI). 

 
Table 2. Broad Intersection of Developments in Onboard AI and Compute 

Onboard 
Hardware 
Stagnates 

- Model requirements and compute 
availability slow  
- Gaps persist between state-of-
the-art and real-world AI 
applications 

- Model growth outpaces onboard 
hardware 
- Gap grows between real-world AI 
applications and lab demonstrations 

Onboard 
Hardware 
Improves 

- Onboard hardware improves to 
suit model needs 
- State-of-the-art models run in 
real-world applications 

- Model requirements and compute 
availability grow 
- Gaps persist between state-of-the-
art and real-world AI applications 

 Model Demands Stabilize Model Demands Grow 

Source: CSET.  
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Conclusion 

In conclusion, we offer three broad recommendations to better manage the constraints 
of onboard AI: 

1. Acknowledge that many real-world systems will underperform those in 
state-of-the-art or laboratory demonstrations. This puts an extra onus on 
testing and evaluation during a time when AI successes are putting pressure on 
developers to rapidly incorporate AI and on organizational leaders to rapidly 
field it. 

2. Acknowledge that hardware constraints also apply to adversaries. This has at 
least two ramifications. Firstly, systems that adversaries deploy may be 
significantly less capable and more error-prone than unconstrained state-of-
the-art models. Some users may be risk-averse and avoid using such systems, 
while others may not be constrained in the same way because they tolerate 
lower performance. Secondly, an adversary’s inability to fabricate or acquire the 
most powerful computing hardware for data centers may not limit their ability to 
compete on the battlefield or in other real-world ‘edge’ applications. 

3. Support research that could narrow the gap between state-of-the-art 
models and deployable models. This includes funding and prioritizing efforts to 
shrink, condense, and accelerate models. It also includes efforts to improve the 
efficiency and scale of AI chips for onboard applications.  
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Appendix A: Methodology 

A.1. Methodology  

1. Select devices used in differing environments (i.e., air, space, land) that could 
run image classification, object detection, real-time object detection, or machine 
translation models locally. Focus explicitly on local inference, and disregard 
devices or applications that use data centers or near-premises ‘edge compute’ 
to support AI inference, including but not limited to sharing resources across 
edge devices, computation offloading to edge servers, resource allocation 
schemes, and architectures such as cloudlets, fog compute, and multi-access 
edge computing.76 

2. Collect technical specifications of the devices (i.e., size, weight, power, sensors, 
UI/controls, instruments, etc.), onboard compute and memory (i.e., board/card 
size, transistor size, FLOPS, OPS, power, memory type/quantity, bandwidth, 
interconnect, etc.), and onboard AI models (i.e., performance, parameters, 
inference FLOPs, speed, architecture, training data, etc.). Only assess AI models 
and processors with open-source data on their compute requirements and 
capacity.  

3. Review popular benchmarks for each AI task, identify the top-performing 
models on particular benchmarks, and examine the associated publications to 
determine what resources are required for inference. Use Papers With Code77 as 
a baseline reference for open-source models, but manually review each 
publication to gather more granular information and ensure the accuracy of the 
data. 

4. Compare the resource requirements of top-performing models with the specific 
or estimated onboard resources of the devices in the case studies, as well as the 
broad resources of common GPUs and more specialized processors/systems 
(e.g., VPUs, SoCs, modules, and accelerators). With the available data, gauge if 
the models can function onboard effectively with said resources. If top-
performing models cannot (or are unlikely to) function effectively onboard, then 
assess what constraints are involved and gauge what level of performance 
below the state-of-the-art could be achieved. 
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A.2. Data Limitations  
1. There is limited open-source data on how much compute is required to run 

many models, as well as the compute capacity of many processors. 
2. There is very limited data on the memory requirements of most models we 

investigated. 
3. We cannot reliably compare the compute requirements/capacity of many 

models and processors due to misaligned metrics from different sources (e.g., 
OPS vs. FLOPS).  

4. We could not fully apply this methodology to the case study of machine 
translation on a smartphone due to limited data on the size and compute 
requirements of machine translation models. We placed this case study in 
Appendix D because it is a good example of when effective onboard AI is 
attainable for a particular consumer application. 

 
Notwithstanding these limitations, the available data for most of the case studies 
sufficiently captures trends and trade-offs between model size, performance, and 
compute requirements, as well as the compute capacity and power consumption of 
many processors. 
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Appendix B: Compute Hardware Data 

We assessed several GPUs, VPUs, NPUs, SoCs, and system-on-modules to determine 
if they could function effectively onboard devices in the case studies (and therefore 
enable local inference). We used a combination of published survey research and 
manual data collection, primarily from the hardware developers’ websites and 
TechPowerUp.78 The primary metrics of interest were the size and weight of the 
processor (including the card/board), compute capacity, memory, power consumption, 
and speed.  

1. Manually assessed several high-end NVIDIA GPUs typically used for AI 
inference on PCs and data centers. These represent compute capacity when 
there are few device- or environment-dependent constraints. They are displayed 
below in Table 3 and Figure 6. 

2. Manually assessed various small, low-power processors (including when they 
are embedded on SoCs or other boards/modules). Some were selected because 
they were used on specific devices in our case studies (the Skydio 2+, LANIUS, 
and Orlan-10 drones, the 6U CubeSat and International Space Station, the FSD 
Tesla, and the iPhone XR). Others were selected because their characteristics 
could enable inference onboard resource-constrained devices (e.g., small size 
and low power). They are displayed below in Table 4 and Figure 7.  

3. Used two surveys as a source for data on AI accelerators.79 However, these 
sources lacked sufficient data on processor FLOPS, which limited our ability to 
compare the accelerators’ compute capacities with the AI models’ compute 
usage for inference.  

This is not a comprehensive assessment of most processors, nor does it involve more 
granular performance considerations regarding theoretical performance vs. actual 
performance in running different AI models (e.g., compute utilization or GPU 
parallelization).80 There are blank portions of the tables due to lack of data, as well as 
several ambiguous data points that cannot be confirmed (which are flagged). 
Notwithstanding, we believe this data, in the aggregate, sufficiently informs our broad 
analysis of onboard AI functionality, constraints, and limitations on various devices.
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Table 3. Popular NVIDIA GPUs Used in Data Centers, Deep Learning Inference, or High-End Computers (Ranked by 
FLOPS Capacity in FP16) 

Hardware Size 
Power 
(TDP)A FLOPS (FP16) FLOPS (FP32) Memory BandwidthB 

Board Size (L x W 
x H) Release 

H100 PCIe81 4nm 350 W 204.9 TFLOPS 51.22 TFLOPS 80 GB 5120 bit HBM2e 2039 GB/s 10.6 x  . ’’* 2022 

GeForce RTX 409082 4nm 450 W 82.58 TFLOPS* 82.58 TFLOPS* 24 GB 384-bit GDDR6X 1008 GB/s 12 x 5.4 x 2. ’’ 2022 

A100 PCIe83 7nm 300 W 77.97 TFLOPS 19.49 TFLOPS 80 GB 5120-bit HBM2e 1935 GB/s 10.  x  .  x  . ’’* 2021 

Tesla T484 12nm 70 W 65.13 TFLOPS 8.14 TFLOPS 16 GB 256-bit GDDR6 320 GB/s 6.6 x 2.7 x 0.7’’* 2018 

RTX A600085 8nm 300 W 38.71 TFLOPS* 38.71 TFLOPS* 48 GB 384-bit GDDR6 768 GB/s 10.  x  . ’’ 2020 

GeForce RTX 309086 8nm 350 W 35.58 TFLOPS* 35.58 TFLOPS* 24 GB 384-bit GDDR6X 936 GB/s 1 .2 x  .  x 2. ’’ 2020 

TITAN V87 12nm 250 W 29.80 TFLOPS 14.90 TFLOPS 12 GB 3072-bit HBM2 651 GB/s 10.  x  .  x 1.6’’ 2017 

GeForce RTX 308088 8nm 320 W 29.77 TFLOPS* 29.77 TFLOPS* 10 GB 320-bit GDDR6X 760 GB/s 11.2 x  .  x 1.6’’ 2020 

V100 PCle89 12nm 250 W 28.26 TFLOPS 14.13 TFLOPS 32 GB 4096-bit HBM2 900 GB/s 10.  x  .  x 1. ’’ 2018 

GeForce RTX 208090 12nm 215 W 20.14 TFLOPS 10.07 TFLOPS 8 GB 256-bit GDDR6 448 GB/s 10.  x  .6 x 1. ’’ 2018 

P100 PCIe91 16nm 250 W 19.05 TFLOPS 9.53 TFLOPS 16 GB 4096-bit HBM2 732 GB/s 10.  x  . ’’* 2016 

Notes: Cells marked with an asterisk (*) indicates ambiguity in the data or a minor conflict in sources (such as identical FLOPS in FP32 and 
FP16).  
A Power is based on Thermal Design Power (TDP), which is the maximum heat a component is expected to output and the cooling systems are 
designed to sustain. TDP is a common metric used to measure GPU power, but it is not an absolute measure of power consumption. 
B Bandwidth is rounded to the nearest whole number. 
Sources: See endnotes. 
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Table 4. Low-Power Processors, SoCs, VPUs, Accelerators, and Modules 

Hardware Type Size PowerA 

FLOPS 
(FP16) 

FLOPS 
(FP32) OPS Memory Bandwidth Release 

Jetson Nano92 

Module; 
Accelerator 20nm 

5-10 W (10 
W TDP) 

471 
GFLOPS 

235 
GFLOPS  

4 GB 64-bit LPDDR4 1600 
MHz (system shared) 25.6 GB/s 2019 

Jetson TX2 NX 
(Pascal GPU)93 

System on 
Module 16nm 

7.5 W (15 W 
TDP)* 

1330 
GFLOPS 

750 
GFLOPS  

4 GB 128-bit LPDDR4 
1600 MHz (system shared) 51.2 GB/s 2021 

Jetson TX2 (Pascal 
GPU)94ɑ 

System on 
Module 16nm 

7.5 W (15 W 
TDP) 

1330 
GFLOPS 

750 
GFLOPS  

8 GB 128-bit LPDDR4 
(system shared) 59.7 GB/s 2016 

Jetson Xavier NX95 System on Chip 12nm 
10 - 20 W 
(15 W TDP) 

1690 
GFLOPS 

844 
GFLOPS 

21 
TOPS* 

16 GB 128-bit LPDDR4x 
(system shared) 59.7 GB/s 2020 

Jetson AGX Xavier 
32 GB96 Module 12nm 

10 - 30 W 
(30 W TDP) 

2820 
GFLOPS 

1410 
GFLOPS 

32 
TOPS 

32 GB 256-bit LPDDR4x 
(system shared) 1377 MHz 136.5 GB/s 2018 

Jetson Orin Nano 
8GB97 

System on 
Module  

7 - 15 W (15 
W TDP) 

2560 
GFLOPS 

1280 
GFLOPS 

40 
TOPS* 8 GB 128-bit LPDDR5 68 GB/s 2022 

Jetson AGX Orin 
32GB98 

System on 
Module  

15 - 40 W 
(40 W TDP) 

6666 
GFLOPS  

3333 
GFLOPS 

200 
TOPS 32 GB 256-bit LPDDR5 204.8 GB/s 2022 

RAD75099 

System on Chip 
(RAD-H)      

2 GB (Flash) 256 MB 
DRAM  2001 

RAD5510100 

System on Chip 
(RAD-H) 45nm 11.5 W TDP 

0.9 
GFLOPS* 

0.9 
GFLOPS* 

1.4 
GOPS 

64 GB 64-bit DDR2/3 
DRAM 51 GB/s 2017* 

RAD5515101 System on Chip 45nm       2017* 
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(RAD-H) 

RAD5545102 

System on Chip 
(RAD-H) 45nm 

20 W* (35 
W TDP) 

3.7 
GFLOPS* 

3.7 
GFLOPS* 

5.6 
GOPS 

4 GB 32-bit/64-bit DDR3 
SDRAM* 51 GB/s 2017* 

Tegra X2 (NVIDIA 
Pascal GPU)103ɑ System on Chip 16nm 

7.5-15 W 
(15 W TDP) 

1500 
GFLOPS 

750 
GFLOPS  

8 GB 128-bit LPDDR4 
854–1465 MHz 59.7 GB/s 2016 

Snapdragon 855 
(Adreno 640 
GPU)104ɑ System on Chip 7nm 5 W TDP 

1798 
GFLOPS 

899 
GFLOPS  

16 GiB 64-bit LPDDR4X-
4266 2133 MHz 

31.79 
GiB/s 2019 

Movidius Myriad 
2105ɑ 

Vision Processing 
Unit 28nm 

1 W (per 
TFLOP)B 

1000 
GFLOPSB   

4 GB 32-bit LPDDR3 733 
MHz 400 GB/sC 2016 

Movidius Myriad X 
4GB106ɑ 

Vision Processing 
Unit 16nm 1.5 W TDP   1 TOPS* 

4 GB 32-bit 
LPDDR3/LPDDR4 SDRAM 
1600 MHz 450 GB/sC 2020 

PowerVR Series5 
SGX530107ɑ 

Video/Imagery 
Accelerator 65nm  

1.6 
GFLOPSD 

1.6 
GFLOPSD    2005 

Tesla Full Self-
Driving (FSD) 
Chip108ɑ System on Chip 14nm 36 W TDP 

600 
GFLOPS* 

600 
GFLOPS* 

73.73 
TOPS 
(INT8) 

8 GiB 128-bit LPDDR4-
4266 

63.58 
GiB/s 2019 

A16 Bionic109 System on Chip 4nm 8 W TDP  
2000 
GFLOPS  

6GB 64-bit LPDDR5 3200 
MHz 51.2 Gbit/s 2022 

A15 Bionic110 System on Chip 5nm 6 W TDP 
3000 
GFLOPS 

1500 
GFLOPS  

6 GB 64-bit LPDDR4X 
2133 MHz 42.7 GB/s 2021 
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A12 Bionic111ɑ System on Chip 7nm 6 W TDP 

1152 
GFLOPS 

560 
GFLOPS 5 TOPS 

12GB 64-bit LPDDR4X 
2133 MHz 34.1 Gbit/s 2018 

Apple M2 Pro112 System on Chip 5nm 30 W TDP* 
13490 
GFLOPS* 

6745 
GFLOPS*  

32 GB 256-bit LPDDR5-
6400 200 GB/s 2023 

Notes: Blank cells indicate a lack of data. Cells marked with an asterisk (*) indicate minor ambiguity in the data or a minor conflict in sources. 
Those marked with an alpha superscript (ɑ) indicate the hardware was used on a specific device we investigated for a case study. Those marked 
with a letter superscript (e.g., A) indicate significant ambiguity or conflicting sources, and are addressed individually in the notes below. Lastly, 
‘ AD-H’ indicates the processor is radiation-hardened. 
A Data on power was retrieved primarily from the manufacturers’ websites and TechPowerUp, although what is meant by power can be 
ambiguous. If power is based on metrics like TDP or W/FLOP, then it is specified within the cell. 
B Intel claims the Movidius Myriad 2 can process 1000 GFLOPS with a “nominal 1 watt power envelope.” We are skeptical of this FLOPS-per-
watt performance, as it is abnormally high, particularly for a processor that was developed in 2016 (and later discontinued). 
C Intel claims the Movidius Myriad 2 and Myriad X have a bandwidth of 400 GB/s and 450 GB/s, respectively. We are skeptical of this bandwidth, 
as it is abnormally high for these types of systems. 
D The sourcing for data on the PowerVR Series5 is from Wikipedia and cannot be confirmed. 
Sources: See endnotes.  
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Figure 6. Popular NVIDIA GPUs Used in Data Centers, Deep Learning Inference, or High-End Computers (Ranked by 
FLOPS Capacity in FP16) 

 
Sources: See Table 3. 
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Figure 7. Low-Power Processors, SoCs, VPUs, Accelerators, and Modules (Ranked by FLOPS Capacity in FP16) 

 
Note: Several of the processors we assessed are not displayed due to data limitations. 
Sources: See Table 4. 
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Appendix C: AI Model Data 

We manually assessed the top-performing AI models for image classification, object 
detection, real-time object detection, and English-French machine translation.113 The 
primary metrics of interest were performance (on popular benchmarks), model size (i.e., 
parameters), compute requirements (i.e., FLOPs), memory requirements, speed (i.e., 
fps), precision for inference (i.e., FP16 vs. FP32 vs. FP64), and the compute hardware 
used by the model’s developers to run inference.  

The tables below display data for image classification and real-time object detection 
models. We do not include tables for object detection or machine translation due to 
insufficient data.114 We used the ImageNet benchmark to assess the performance of 
image classification models, and the MS COCO benchmark to assess the performance 
of real-time object detection models. All data are as of December 2022.  
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Table 5. Image Classification Models Data (Ranked by Performance on ImageNet 
Benchmark) 

Model 
Performance (Top-1 
Accuracy) 

Paramet
ers (M) 

Inference 
(GFLOPs) Original Publication Date 

CoCa (finetuned)115 91% 2100  June 2022 

Model soups 
(BASIC-L)116 90.98% 2440  Jul 2022 

Model soups (ViT-G/14)117 90.94% 1843  Jul 2022 

ViT-e118 90.90% 3900  Sep 2022 

CoAtNet-7119 90.88% 2440 2586 Sep 2021 

CoAtNet-6120 90.45% 1470 1521 Sep 2021 

ViT-G/14121 90.45% 1843 2859.9 Jun 2022 

DaViT-G122 90.40% 1437 1038 Apr 2022 

DaViT-H123 90.20% 362 334 Apr 2022 

MaxViT-XL (512res, JFT)124 89.53% 475 535.2 Sep 2022 

MaxViT-L (512res, JFT)125 89.41% 212 245.2 Sep 2022 

MaxViT-XL (384res, JFT)126 89.36% 475 293.7 Sep 2022 

NFNet-F4+127 89.20% 527 367 Feb 2021 

InternImage-DCNv3-H 
(M3I Pre-training)128 89.20% 1080 1478 Nov 2022 

MaxViT-L (384res, JFT)129 89.12% 212 128.7 Sep 2022 

MOAT-4 22K+1K130 89.10% 483.2 648.5 Oct 2022 

MViTv2-H (512 res, 
ImageNet-21k pretrain)131 88.80% 667 763.5 Mar 2022 

MaxViT-XL (512res, 
21K)132 88.70% 475 535.2 Sep 2022 

SWAG (ViT H/14)133 88.60% 633.5 1018.8 Apr 2022 

CoAtNet-3 @384134 88.52% 168 114 Sep 2021 

MaxViT-XL (384res, 
21K)135 88.51% 475 293.7 Sep 2022 
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FixEfficientNet-L2136 88.50% 480 585 Nov 2020 

MViTv2-L 
(384 res, ImageNet-21k 
pretrain)137 88.40% 218 140.7 Dec 2021 

CAFormer-B36 (384 res, 
21K)138 88.10% 99 72.2 Dec 2022 

MViTv2-H (ImageNet-21k 
pretrain)139 88% 667 120.6 Dec 2021 

DaViT-B (ImageNet-
22k)140 86.9% 87.9 46.4 April 2022 

Notes: Blank cells indicate a lack of data. All data is as of December 2022.  
Sources: See endnotes. 
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Table 6. Real-Time Object Detection Models Data (Ranked by Performance on COCO 
Test-Dev Benchmark) 

Model 
Performance 
(Box AP) 

Parameters 
(M) 

Inference 
(GFLOPs) FP Processor 

Speed 
(fps) 

Publication 
Date 

YOLOv7-E6E141 56.8 151.7 843.2  V100 36 Jul 2022 

YOLOv7-D6142 56.6 154.7 806.8  V100 44 Jul 2022 

YOLOv7-E6143 56 97.2 515.2  V100 56 Jul 2022 

YOLOv7-W6144 54.9 70.4 360  V100 84 Jul 2022 

YOLOv7-X145 53.1 71.3 189.9  V100 114 Jul 2022 

RTMDet-x146 52.8 94.9 141.7 FP16 GTX 3090 300* Dec 2022 

YOLOv7147 51.4 36.9 104.7  V100 161 Jul 2022 

YOLOX-X148 51.2 99.1 281.9 FP16 V100 57.8 Aug 2021 

YOLOv5-X149 50.4 87.8 219 FP16 V100 62.5 Aug 2021 

DAMO-YOLO-M150 50 28.2 61.8 FP16 T4 233 Dec 2022 

YOLOX-L151 50 54.2 155.6 FP16 V100 69 Aug 2021 

DAMO-YOLO-S152 46.8 16.3 37.8 FP16 T4 325 Dec 2022 

DAMO-YOLO-T153 43 8.5 18.1 FP16 T4 397 Dec 2022 

PP-YOLOE-S154 43.1 7.9 17.4 FP16 V100 333.3 Dec 2022 

YOLOX-S155 39.6 9 26.8 FP16 V100 246.9 Dec 2022 

YOLOv7-tiny-SiLU156 38.7 6.2 13.8  V100 286 Jul 2022 

Notes: Blank cells indicate a lack of data. Cells marked with an asterisk (*) indicate minor ambiguity in 
the data or a minor conflict in sources. All data is as of December 2022.  
Sources: See endnotes.  
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Appendix D: Machine Translation on Smartphones 

Throughout the Afghanistan war, coalition forces invested substantially in human 
translators, exemplified by the Pentagon’s $679 million contract to field more 
translators in 2010.157 Even with such investments there was a dearth of well-trained 
translators, which hamstrung coalition efforts, from reduced communication to 
problematic mistranslations.158 

Machine translation can help address this shortfall, particularly in low-stakes cases or 
when human translators are not available. But not all machine translators are created 
equal, largely because there is more data available for some languages than others. 
Common languages such as English, French, and Chinese are considered high-resource 
languages as compared to the many low-resource languages that have far less data 
available.159 For machine translation, data availability seems to be more of a bottleneck 
than model size.160 Large models only slightly outperform smaller models, but high-
resource languages substantially outperform low-resource languages.161 

Google’s online translation service is relatively unconstrained because it runs on data 
center servers, while offline translation is also available for users who download a 
model for each language pair to run onboard devices like smartphones. However, the 
offline and online translations are not identical.162 We compared French to English 
translations from both the online and offline models, finding that online models 
matched human translations somewhat more closely.163 This implies that Google finds 
it worthwhile to run more capable models in their unconstrained data centers and offer 
a less capable model for users to run locally on more constrained devices, but the 
difference is not large from a practical standpoint. We found one example of a 
problematic local mistranslation, which is displayed below in Table 7: one could 
mistakenly infer from the local translation that all three people “had to join a shelter.”  
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Table 7. Human vs. Online and Local Machine Translation (French-English) 

Human Translation (from French) Online Translation Local Translation 

Just before the start of the 
European Union (EU)-Ukraine 
summit held in Kyiv on Friday, 
February 3, an air raid siren 
sounded near Maidan Square, 
where Ursula von der Leyen had 
stopped. The president of the EU 
Commission, who was to meet 
Volodymyr Zelensky and her 
European Council counterpart 
Charles Michel at the 
presidential palace, had to take 
shelter for over half an hour. 

Just before the start of the 
European Union (EU)-Ukraine 
summit held in kyiv on Friday 
February 3, a siren sounded near 
Maidan Square, where Ursula von 
der Leyen was. The President of 
the Commission, who was to 
meet Volodymyr Zelensky and 
Charles Michel, her counterpart 
from the European Council, at 
the presidential palace, had to 
go to a shelter for more than 
half an hour. 

Just before the start of the 
European Union-Ukraine summit 
held in Kiev on Friday, February 3, 
a siren sounded near Maidan 
Square, where Ursula von der 
Leyen was located. The 
President of the Commission, 
who was to find, at the 
presidential palace, Volodymyr 
Zelensky and Charles Michel, 
her counterpart of the European 
Council, had to join a shelter for 
more than half an hour. 

Note: BLEU scores were calculated by CSET. 
Source:  irginie Malingre, “In Kyiv, EU leaders promise new sanctions and welcome Ukraine’s ‘progress’ 
toward membership,” Le Monde, February 2023, 
https://www.lemonde.fr/en/international/article/2023/02/04/in-kyiv-eu-leaders-promise-new-sanctions-
and-welcome-ukraine-s-progress-toward-membership_6014396_4.html.  

Academic research implies that the cloud and local models might perform similarly 
because data availability is the limiting factor, rather than model size.164 This is also 
why low-resource languages, which have less data, frequently perform worse. Since 
high-performing models can be relatively small in size, bilingual machine translation is 
only slightly constrained by the onboard computing resources of a smartphone. This 
may be less true for multilingual translators, which appear to need larger neural 
networks to accommodate the larger scope of their task.165  
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